
 

Science Journal of Circuits, Systems and Signal Processing 
2014; 3(2): 5-13 
Published online September 30, 2014 (http://www.sciencepublishinggroup.com/j/cssp) 
doi: 10.11648/j.cssp.20140302.11 
ISSN: 2326-9065 (Print); ISSN: 2326-9073 (Online)  

 

An adaptive fuzzy logic quaternion scaled unscented 
Kalman filtering for inertial navigation system,  
GPS and magnetometer sensors integration 

Wassim Khoder
1
, Bassem Jida

2
 

1Faculty of Economics and Business Administration, Lebanese University, Tripoli, Lebanon 
2Faculty of Letters, Lebanese University, Tripoli, Lebanon 

Email address: 
wassim.khoder@hotmail.com (W. Khoder),bassemjida@hotmail.com (B. Jida) 

To cite this article: 
Wassim Khoder, Bassem Jida. An Adaptive Fuzzy Logic Quaternion Scaled Unscented Kalman Filtering for Inertial Navigation System, GPS 
and Magnetometer Sensors Integration. Science Journal of Circuits, Systems and Signal Processing. Vol. 3, No. 2, 2014, pp. 5-13.  
doi: 10.11648/j.cssp.20140302.11 

 

Abstract: In this paper, we present a technique based on fuzzy logic to improve the performance of the inertial navigation 
system integrated with GPS, and magnetometer. The proposed fuzzy technique is primarily used to predict position and 
velocity measurements during GPS outage signals. As long as the GPS measurements are available, the Q-SUKF of  
INS/GPS/MAG (MAG: magnetometer)  integrated system operates efficiently and provides precise navigation states 
estimation. Nevertheless, during GPS outage signals, the proposed fuzzy technique is adapted to the Q-SUKF to obtain the (A) 
(FL) QSUKF (Adaptive Fuzzy Logic Quaternion Scaled Unscented Kalman Filter) in order to correct the degradation of the 
performance of the algorithm. The adaptive fuzzy logic attributes values to the measurements covariance matrix in order to 
determine the gain of the filter. It will decrease the measurement noise variance of the Kalman filter and then improves 
eventually the accuracy of the integrated navigation system states estimation. Finally, an experimental part on the use of the 
proposed fuzzy technical with the Q-SUKF has been validated. Several GPS outages with duration of 30s have been simulated 
to study the behavior of the proposed filter. In addition, an initial attitude error of 60 degrees is given in each axis to test the 
robustness of the filter proposed under large attitude errors. The results of the experimental validation have shown the 
effectiveness and the significant impact of the (A) (FL) Q-SUKF in the reduction of the drift errors estimation of the position 
and velocity in case of GPS outages in the tested scenarios. 

Keywords: Inertial Navigation System, GPS, Magnetometer, Takagi-Sugeno Fuzzy Model, Fuzzy C-Means,  
Mean Square Error 

 

1. Introduction 

The low cost inertial navigation systems provide accurate 
and reliable navigation solutions when they are integrated 
with aided sensors (GPS, magnetometer) in the filter Q-
SUKF [1].  The INS/GPS/MAG integration can be briefly 
classified as loosely-coupled, tightly-coupled and deeply-
coupled. The choice of the integration approach depends on 
the type of application and on the operating environment. 
The large bias drift of inertial sensors prevent the inertial 
navigation system to operate in standalone mode and even 
when it is combined with the magnetometer. Therefore, the 
performance of the integrated system will deteriorate 
considerably during periods of GPS outages. During the last 
decade, the Takagi-Sugeno (TS) fuzzy systems have been 

used to model successfully the non-linear systems and have 
proved a good representation of dynamic systems [2], [3], [4], 
[5]. In these approaches, the non linear behavior of a system 
is represented by a composition of “If-Then” rules, 
concatenating a set of local linear sub models. In this article, 
a Takagi-Sugeno fuzzy model is used to estimate the position 
and velocity measurements to the integrated INS/GPS/MAG 
system during the various GPS outages. The fuzzy model 
requires an offline learning phase extracted from a large 
number of input-output coupled data when GPS signals are 
available. This phase aims to identify the parameters of the 
fuzzy model used with the filter Q-SUKF. The Input-Output 
data cover different dynamics and types of movement 
(straight and rotation). During the learning phase, the inputs 
of the fuzzy model are position, velocity and yaw angle 
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predicted by the Q-SUKF filter. The outputs of the fuzzy 
model are the positions and velocity measured by the GPS. 
At the end of the learning phase, the best estimates of the 
parameters of the fuzzy model are achieved. Therefore, the 
model should be able to provide corrections or compensatory 
measurements of position and velocity during GPS outages in 
real time process. These measurements allow to maintain the 
update mode phase of Q-SUKF fiter. In this paper, we 
describe a new hybridization filter, (A) (FL) Q-SUKF, of 
these three sensors based on the application of the fuzzy 
model with the Q-SUKF filter. Next, an experimental part on 
the (A) (FL) Q-SUKF algorithm has been validated. 

2. Robustness of the Q-SUKF  

The Q-SUKF is a recursive algorithm designed to correct 
the errors of the inertial navigation system through external 
measurements provided by aided sensors which are here, the 
GPS and magnetometer. As long as the GPS measurements 
are available, the Q-SUKF operates efficiently and provides a 
precise estimate of the navigation’s states. Nevertheless, 
during the GPS outages, the overall performance of INS/GPS 
or INS/GPS/MAG systems is significantly degraded due to 
the rapid accumulation of errors which affect the inertial 
measurement unit components of the inertial navigation 
system. 

2.1. Use of Fuzzy Logic as a Criterion of Robustness of the 

Q-SUKF Filter 

The fuzzy logic is a set of mathematical theories which 
deals with the representation and manipulation of imperfect 
knowledge  (imprecise, uncertain or incomplete). It does not 
seek to eliminate them; on the contrary, it will seek to 
preserve to the maximum. Therefore, its purpose is to supple 
the representation framework and knowledge’s processing, 
inspiring thus from the human mental processes. The 
practical applications of fuzzy logic are numerous. Examples 
include: automatism, robotics, expert systems, decision 
support, etc. In this paper, the fuzzy logic is defined as a 
logic which uses the general function of "expert system" in 
data processing. A fuzzy model, denoted (A) (FL), is 
proposed to solve the problem of the performance’s 
degradation of the INS/GPS or INS/GPS/MAG system 
during the GPS outages.  When GPS signals are available, 
this model is extracted offline from a large number of 
coupled input-output data during a period called learning 
phase. The inputs of the fuzzy model are, position, velocity, 
and yaw angles, predicted by the Q-SUKF. The outputs of the 
fuzzy model are the positions and velocities measured by the 
GPS, as shown in Figure 1. 

 
Figure 1. Data collections for the extraction of fuzzy model (A) (FL) during the learning phase. 

 
Figure 2. Operating mechanism of the fuzzy model (A) (FL) with the Q-SUKF during GPS outages 
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At the end of the learning phase, the best estimates of the 

parameters of the Fuzzy model are achieved. When an outage 
GPS occurs, the fuzzy model (A) (FL) generate alternately 
estimated measurements of position and velocity and which 
are supposed to be the GPS measurements if they were 
available. Consequently, the filter Q-SUKF continues to use 
the equations of measurement update, as shown in Figure 2. 

The Q-SUKF filter is noted (A) (FL) Q-SUKF when it is 
used with the proposed fuzzy model.  

3. Proposed Fuzzy Inference System  

The proposed fuzzy model utilizes a fuzzy inference 
system of Takagi-Sugeno type (FIS-TS) which has special 
properties since it represents the non-linear systems in the 
form of an interpolation between local linear models. The 
FIS-TS fuzzy model proposed can be written in a general 
form as: 

:If ( )Then , 1,...,T

i k i k i i k iR x is A x y a x b i r= + =ɶ      (1) 

Where, ( )i kA x is a gaussian membership function of the 

input variable vector at observation k, kx , in the fuzzy set iA . 

ai and bi are the components of the   consequent parameters 

vector T
T

i i ia b Θ =  
 of the i-th fuzzy rule which describes 

the local linear model. Ri is the i-th fuzzy rule, r is the total 

number of rules and iyɶ  is the estimated output of the local 

linear model. The proposition “ ( )k i kx is A x ” can be defined 

for the different components of kx  in form of conjunction: 

1, ,1 1, , , ,:If ( ) and and ( )

then , 1,...,

i k i k n k i n n k

T

i i k i

R x is A x x is A x

y a x b i r

…

= + =ɶ
       (2) 

Where n is the number of components of 
kx . The 

components of kx  are the three components of the position 

[ ]n

k k k kp hλ= Φ , the three components of the velocity n

kv  

and the yaw angle 
kψ . The choice of these parameters as 

input of the fuzzy model is convenient because they are the 
main factors to affect the prospected outputs of the fuzzy 
model (position and velocity vectors). In addition, these 
states are all determined in the navigation frame and easily 
obtained from the prediction phase of the Q-SUKF filter. 
Two classes have been assigned iteratively to each 
component of the entry vector where a Gaussian function has 
been implemented to represent the membership degree to 
each class. Based on a number of entries equal to 7 and the 
class number equal to 2, the number of rules is therefore 
equal to  72 = 128. The estimated outputs of the fuzzy model 

are the position and velocity vectors, np  and
nv , expressed in 

the navigation frame and which can be calculated from the 
equation (1) of the FIS as follows:  

( )( )
( )

1

1

r
T

i k i k i

i
k r

i k

i

x a x b

y

x

β

β

=

=

+
=
∑

∑
ɶ                         (3) 

Where ( )i kxβ denotes the degree of fulfillment of the i-th 

rule: 

( ) ( ) ( )2

, ,

, , 2
1 1 ,

1
exp

2

n n
j k i j

i k i j j k

j j i j

x V
x A xβ

σ= =

 −− = =
 
 

∏ ∏    (4) 

2
, ,,i j i jV σ represent the center and the variance of the 

Gaussian fuzzy membership functions respectively. To 
identify the FIS of the fuzzy model, the antecedent 
parameters, 2

, ,,i j i jV σ and the consequent parameters,
iΘ , must 

be determined. 

3.1. Determination of Antecedent Parameters 

Abonyi in [6] has proposed the Fuzzy C-Means 
classification algorithm (FCM) to identify the antecedent 
parameters of Takagi-Sugeno fuzzy model. The FCM 
algorithm aims to divide the data points into homogeneous 
classes or groups. Thus, the points in the same class are as 
similar as possible while points in different classes are as 
dissimilar as possible. The FCM algorithm, which issued 
from the works of [7] and improved later by [8], constitutes 
an important reference among the differents methods of 
fuzzy coalescence [9] based on the minimization of the 
objective function, of the form: 

2 2

1 1 1 1

( , , ) - .
c N c N

FCM ik k i ik ik

i k i k

J X U V x V Dµ µ
= = = =

= =∑∑ ∑∑       (5) 

Where X is the data matrix, N is the number of 

observations, iµ is the Fuzzy partition of fuzzy subsets i, U is  

fuzzy partition matrix (of dimension c N× ), [ ]1 2, ,..., cV V V V=  

is a matrix of cluster centroid vectors which must be 
determined, with  n

iV ∈ℝ , 1 i c≤ ≤ , in our case, the number 

of cluster c is equal to the number of rules r and  
-ik k iD x V=  is the Euclidean distance  between the 

observation kx  and the Cluster centroid vector 
iV . In the 

equation (eq.5), the dissimilarity measure expressed by the 
term ( , , )FCMJ X U V  is the sum of the squares of the distances 

between each observation kx  and the corresponding center 

iV  . The effect of this distance is weighted by the degree of 

activation of the class, ( )m

ik
µ corresponding to kx . The value 

of the objective function ( , , )FCMJ X U V  can be seen as a 

measure of the total variance of kx  with respect to the 
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centers 
iV . The minimization of the objective function 

( , , )FCMJ X U V  is a non-linear optimization problem that can 

be solved by different methods; the most used is the Fuzzy 
C-Means (FCM) algorithm [8]. The minimization of the 
objective function ( , , )FCMJ X U V  can be achieved by finding 

the cluster centroid vectors 
iV  and the standard deviation 

,i jσ  

of the membership Gaussian functions iteratively [10]:  

( )
( )2-1 -1

, ,
21 1

 ,
-1 -1

1 1

-
, 1 ,1= =

= =

= = ≤ ≤ ≤ ≤
∑ ∑

∑ ∑

N N
l l l

ik k ik j k i j
ll k k

i i jN N
l l

ik ik

k k

x x V

V i c j n

µ µ
σ

µ µ
 (6) 

Where the membership degree ikµ   are calculated as 

follows: 

( ) ( )2/ 1
1

1

1
, 1 with 0,1 and 1

/

c

ik ik ikn
m

i
ik jk

j

i c

D D

µ µ µ
− =

=

= ≤ ≤ ∈ =∑
∑  (7) 

[ )1,m ∈ +∞  is the fuzziness parameter of the partition. The 

parameter m influences the form of the classes in the data 
space of the system. When m approaches the value 1, the 
shape of the membership function of each class is close to be 

Boolean function { }( )0,1m∈ . The partition can range from a 

hard partition ( 1m = ) to a completely fuzzy partition 
( m → +∞ ) where the average of the centers are all equal to 
the average of X. These properties are independent of the 
optimization method selected [11]. Although the choice of m 
depends on the data [12], usually this parameter is initialized 
to a value between 1, 5 and 2,5. The iterative process stops 
when the partition becomes stable, i.e., when there is no 
changes   significantly of the fuzzy partition matrix between 
two successive iterations. This is expressed in a general terms 
by the verification of the expression (8) where the left-hand 
side reflects a matrix norm and the coefficient ε  defines the 
threshold of convergence: 

( ) ( )-1l l
U U ε− <                                 (8) 

The expression ( )l
U  represents the fuzzy partition matrix 

of the l - iteration. 

3.2. Determination of Consequent Parameters  

After the learning of the antecedent parameters using 
equations (6) and (7), the equation (eq.3) can be rewritten as 
follows:  

( ) ( ) ( ) [ ] ( ) ( )1 1 1
1

. . . . .
c

Te e e e e

k i k k i k k c k k c k k c k k

i

y x x x x x x x x x xβ β β β β
=

   = Θ = Θ Θ = Θ   ∑ɶ ⋯ ⋯ ⋯         (9) 

Where [ ]1e

k kx x=  is the input vector to the fuzzy model 

augmented by the unit element. Θ  is the M-dimensional 
consequent parameters vector where ( )1M c n= × + .

iβ  is 

defined by the following formula: 

( ) ( )
( )

1

i k

i k c

i k

i

x
x

x

β
β

β
=

=
∑

                           (10) 

The linear equation (eq.9) of the consequent parameters 
vector can be written as follows: 

Z YΘ =                                   (11) 

Given M the number of linear consequent parameters and 
N the number of learning input-output data, the dimensions 
of the matrices Z, Θ and Y are , 1N M M× ×  and 1N ×  

respectively. As N is always greater than M (N > M), the 
system of linear equations (eq.9) is an underdetermined 
system, therefore generally there is no exact or unique 
solution which can be reached. To get there, the least squares 
estimation (LSE) method is exploited to minimize the 
squared distance between the vector Y and the linear 
combination ZΘ . It is a classical problem that forms the basic 

in many applications such as linear regression, adaptive 
filtering and signal processing. The famous formula for 
solving systems of underdetermined equations uses the 

pseudo-inverse matrix of Θ  as follows [13]: 

( ) 1
T TZ Z Z Y

−∗Θ =                            (12) 

Where TZ  is the transpose of Z. ( ) 1
T TZ Z Z

−
is the pseudo-

inverse matrix of Z if ( )T
Z Z  is non-singular. Despite that the 

equation (eq.12) is expressed in few words, it is very costly 
in terms of computation time when it comes to the 
calculation of the inverse of a matrix TZ Z  and, in addition, it 
becomes poorly  defined if this matrix is singular. To avoid 
the large computation time or the problem of singularity, 
sequential formulas are used to calculate the least square 

estimation of Θ . This sequential method is more efficient, 
especially when M is small. If the ith row of the matrix Z in 

equation (eq.11)  is denoted by T

iz  and the ith element of the 

vector Y is denoted by T

iy , then Θ  may be calculated 

iteratively using the following sequential formulas [13], [14]: 

( )1 1
1 1 1 1 1 1

1 1

, 0, , 1
1

T
Ti i i i

i i i i i i i i iT

i i i

S z z S
S S S z y z i N

z S z

+ +
+ + + + + +

+ +

= + Θ = Θ + − Θ = −
+

…                          (13) 
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Where 

iS   is often called the covariance matrix and the 

estimated least squares ∗Θ  is equal to
NΘ . The initial 

condition of the equation (eq.13) is 
0 0Θ =  and

0S Iη= , 

whereη  is an arbitrary positive number which is large and I  

is the M M× - dimensional identity matrix. 

4. Simulations 

In this section, the solution of the Q-SUKF filter used with 
the fuzzy model is presented. The main objective of the (A) 
(FL) Q-SUKF filter is to preserve the update phase of the 
QSUKF filter by providing simulated measurements of 
position and velocity during the GPS outages. The Fuzzy 
model is extracted from a large number of input/output data 
through an offline learning phase. This learning phase is 
realized during the availability or reliability of GPS 
measurements. The inputs of the fuzzy system are the 
position, velocity and the yaw angle determined by the Q-
SUKF filter. The outputs of the fuzzy model are the positions 
and velocities provided by the GPS. The learning phase of 
fuzzy model is carried out over a short period of time 
between two successive GPS measurements. This ensures 
that the drift time of position and velocity errors remain 
insignificant. It also ensures the reliability of the 
measurements provided by the learning process. The 
adaptation of antecedent and consequent parameters of the 
fuzzy inference system during the learning process uses 
Fuzzy C-Means (FCM) classification and Least Squares 
Error (LSE) methods respectively. When GPS outage occurs, 
the adapted fuzzy logic model (A) (FL) switches to the 
prediction mode to provide simulated measurements of 
position and velocity to keep the correction phase in Q-
SUKF filter. The problem now is how to attribute the values 
of the measurements provided by the proposed fuzzy model 
to the covariance matrix in order to determine the gain of the 
filter. To overcome this problem, once the identification 
parameters of the fuzzy model are calculated, the estimated 

outputs of the fuzzy model during the learning phase are 
computed by applying the equation (eq.3). Note that the 
estimated outputs during the learning phase include the effect 
of the measurements noises of GPS because they are 
calculated from the parameters of the fuzzy model identified 
from these measurements. The variance of these estimated 
outputs are the diagonals elements of the covariance matrix 
which must be used as the error covariance matrix of 
measurements of the fuzzy model during the GPS outages. 

4.1. Simulation Model 

To test the effectiveness of the (A) (FL)Q-SUKF filter and 
its impact on the accuracy of the  navigation parameters 
calculation (specially the position and velocity), a simulated 
data of inertial measurement unit, GPS and magnetometer 
were used. The experiment was conducted using a car driving 
(reference trajectory) for 30 mimutes. This reference 
trajectory was generated by the function “progencar” of INS 
toolbox version 3.0 created by GPSoft. This trajectory covers 
different dynamic (static and kinematic) and scenarios of 
motion (rotations and rectilinear). The data of the inertial 
navigation system (angle and velocity increments) were 
simulated from the parameters of the profile of the 
automobile using certain functions of the INS toolbox. These 
angle and velocity increments have been corrupted with 
various sources of errors such as biases, scale factors and 
noises in order to generate outputs close to real data of an 
inertial navigation system. The characteristics of the error’s 
models of the inertial sensors used in the experiment are 
presented in Table 1, where the two parameters T and σ  
describe the first-order markov process x represented by: 

1
x x

T
ω= − +ɺ                                 (14) 

Where T is the correlation time of the process x and ω  is 
a wiener process with variance 22 /Tσ  

Table 1. Characteristics of error models of the inertial sensors used in the experience 

Parameter Model Accelerometer Gyroscope 

Noise Random Walk 0.6 / /m s h  3.5deg / h  

Bias First-order Gauss-Markov  
20 .1 /

1 h o u r
a

m s

T

σ =
=

 100 deg /

1hour

g h

T

σ =

=
 

Scale Factor  First-orderGauss-Markov 
1000

4 hours
sa PPM

T

σ =
=

 1000

4 hours

sg PPM

T

σ =

=
 

 
The GPS data (position and velocity) were generated by 

adding to the positions and velocities data of the reference 
trajectory a gaussian white noise. The initial standard 
deviation of the  position expressed in Cartesian coordinates 
in the navigation frame is equal to 2 cm in the horizontal 
plane and is equal to 4 cm in the vertical plane. The initial 
standard deviation of the velocity expressed in the navigation 
frame is equal to 0.25 m/s for the horizontal components and 
is equal to 0.4 m/s for the vertical component. Simulated data 

of the Magnetometer (Earth' s magnetic field) were generated 
in the navigation frame by the World Magnetic Model 2010 
(WMM-2010) that uses the geographic position of the 
vehicle to determine its components. This reference magnetic 
field is transformed into the body frame and corrupted by a 
Gaussian white noise of zero-mean and standard deviation 
equal to 0,002 Gauss/s 1/2. Two simulations of GPS outages 
with a duration of 30 s have been considered along the path, 
as shown in Figure 3.  
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These two GPS outages have been simulated to study the 
behavior of the (A) (FL) QSUKF filter  in the case of 
degradation of the accuracy of GPS signals. Different 
dynamics and types of movement (straight and rotation) have 
been considered during these outages. The vehicule is turned 
90 degree to the left when the first GPS outage occurs while 
the vehicle movement over the second outage of GPS was 

straight. In these 2 periods, the Q-SUKF filter operates in 
prediction mode and thus the position and velocity errors 
should increase with time. On the other hand, the proposed 
method allows to our filter to operate in update mode where 
the measurements of correction are obtained from the fuzzy 
model ((A) (FL) Q-SUKF). 

 

Figure 3. Simulated trajectory with GPS outages indicated. 

4.2. Results 

To test the performance of the proposed approach, an 
initial attitude error of 60 degrees is given in each axis. The 
diagonal terms of initial covariance matrix represent 
variances or mean squared errors. The off-diagonal terms are 
set to be zeros. The parameters used in the Q-SUKF 
developed are given by scaling parameters 0.05α =  
and 2β = , and by weight of 0th point

0 0.5ω = .  

The figures (Figure 4a, Figure 4b, Figure 5a, Figure 5b) 
show the velocity errors during the two periods of GPS 
outages 1, 2 respectively, before and after the application of 
the proposed technique of the fuzzy model to Q-SUKF filter.  
We observed in these figures that the maximum errors of the 
velocity components ( )n e dδv , δv et δv  have been reduced 

after the application of the proposed two periods of GPS 
outages. The table (Table 2) summarizes the maximum error 
and the percentage of the reduction of this maximum error 
for the three components of the velocity. The fuzzy model 
proposed applied to the Q-SUKF filter has provides a 

significant improvement of 43 % at least in the reduction of 
the maximum errors on the different components of the 
velocity. 

Table 2. Reduction of the maximum error of the velocity of Q-SUKF filter 

after using the fuzzy model. 

Maximum Error Outage GPS 1 Outage GPS 2 

nδv Q-SUKF 

nδv (A)(FL) Q-SUKF 

Reduction (%) 

7,70 
1,93 
75,32% 

8,30 
-1,25 
84,93% 

eδv Q-SUKF 

eδv (A)(FL)Q-SUKF 

Reduction (%) 

-8,20 
4,60 
43,90% 

6,10 
2,10 
65,57% 

dδv Q-SUKF 

dδv (A)(FL)Q-SUKF 

Reduction (%) 

-2,00 
-0.50 
74,75% 

-3,20 
0,40 
87,50% 

 

 

Figure 4a. Velocity error estimated by Q-SUKF during GPS outage 1 
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Figure 4b. Velocity error estimated by (A)(FL)Q-SUKF during GPS outage 1 

 

Figure 5a. Velocity error estimated by Q-SUKF during GPS outage 2 

 

Figure 5b. Velocity error estimated by (A) (FL) Q-SUKF during GPS outage 2 

The figures (Figure 6a), (Figure 6b), (Figure 7a) and 
(Figure 7b) show the position errors during the two periods 
of GPS outages 1, 2 respectively, before and after the 

application of the proposed technique of the fuzzy model to 
Q-SUKF filter. 

 

Figure 6a. Position error estimated by Q-SUKF during GPS outage 1 
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Figure 6b. Position error estimated by (A) (FL) Q-SUKF during GPS outage 1 

 

Figure 7a. Position error estimated by Q-SUKF during GPS outage 2 

 

Figure 7b. Position error estimated by (A)(FL) Q-SUKF during GPS outage 2 

Table 3. Reduction of the maximum error of the position of Q-SUKF filter 

after using the fuzzy model 

Maximum Error Outage GPS 1 Outage GPS 2 

nδx Q-SUKF 

nδx (A)(FL)Q-SUKF 

Reduction (%) 

-81,20 
1,10 
98,64% 

34,20 
-1,50 
95,61% 

eδx Q-SUKF 

eδx (A)(FL)Q-SUKF 

Reduction (%) 

74,40 
-2,30 
96,90% 

70,80 
-0,80 
98,87% 

dδx Q-SUKF 

dδx (A) (FL) Q-SUKF 

Reduction (%) 

-17,60 
-0.30 
98,29% 

53,70 
0,40 
99,25% 

We notice in these figures that the maximum errors of the 
position components ( )n e dδx ,δx et δx  have been reduced 

considerably after the application of the proposed technique 
of the fuzzy model to the Q-SUKF filter during the two 
periods of GPS outages. The table (Table 3) summarizes the 
maximum error and the percentage of the reduction of this 
maximum error for the three position components. The fuzzy 
model proposed applied to the Q-SUKF filter has provides a 
significant improvement of 95 % at least in the reduction of 
the maximum errors on the different components of the 
position.  

In conclusion, although these first results cannot be 
generalized, they may be promising to give the green light 
for future research recitals GPS outages in different scenarios 
of  real movement for the interest of a generalization. 



Science Journal of Circuits, Systems and Signal Processing 2014; 3(2): 5-13 13 
 

5. Conclusion  

This paper presents a new hybridization filter of the 
inertial navigation system with GPS, and magnetometer. This 
new filter, denoted (A) (FL) Q-SUKF, is based on Q-SUKF 
filter with the fuzzy modeling. As long as the GPS 
measurements are reliable, the integration INS/GPS/MAG 
gives good results. When the measurements of GPS are not 
reliable or unavailable, the fuzzy model allows the Q-SUKF 
filter to continue to correct the errors of the estimation of the 
parameters of navigation (position and velocilty) of the 
vehicule by providing simulated position and velocity 
measurements. The results of the experimental validation 
have shown the effectiveness and the significant impact of 
the fuzzy technique used with the Q-SUKF filter in the 
reduction of derivatives of the position and the velocity in 
case of GPS outages in the tested scenarios. The proposed 
model has effectively compensated for the absence of GPS 
update measurements. The (A) (FL) Q-SUKF filter gives us 
more accurate calculation of the rotation matrix which is 
integrated in the calculation of the position and velocity, and 
therefore a significant estimate of the parameters of the 
navigation system (position and velocity) compared to the Q-
SUKF filter during the absence of GPS signals. The results 
obtained on synthetic data have shown the contribution of 
fuzzy logic and have validated the approach proposed. 
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