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Abstract: Generalized Cross Validation (GCV) has been considered a popular model for choosing the complexity of 

statistical models, it is also well known for its optimal properties. Mallow’s CP criterion (MCP) has been considered a 

powerful tool which is used to select smoothing parameters for spline estimates with non-Gaussian data. Most of the past 

works applied Generalized Cross Validation (GCV) and Mallow’s CP criterion (MCP) smoothing methods to time series data, 

this methods over fits data in the presence of Autocorrelation error. A new Smoothing method is proposed by taking the hybrid 

of Generalized Cross Validation (GCV) and Mallow’s CP criterion (MCP). The predicting performance of the Hybrid GCV-

MCP is compared with Generalized Cross Validation (GCV) and Mallow’s CP criterion (MCP) using data generated through a 

simulation study and real-life data on all SITC export and import price index in Nigeria between the years, 2001-2018, 

performed by using a program written in R and based on the predictive Mean Score Error (PMSE) criterion. Experimental 

results obtained show that the predictive mean square error (PMSE) of the three smoothing methods decreases as the sample 

size and smoothing parameters increases. The study discovered that the Hybrid GCV-MCP smoothing methods performed 

better than the classical GVV and MCP for both the simulated and real life data. 
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1. Introduction 

There are several ways of modeling time-series 

observations through nonparametric regression techniques to 

make predictions, one such nonparametric technique is the 

spline smoothing method [1]. Spline smoothing model 

assume that observations ��  are taken at times ��, for i = 1, ..., 

n and the ��are generated by a model of the form; 

�� � ����� 		��, 
	 � 	1, . . .		n                          (1) 

Where;	�
 is the value of the time series in time ti, f is an 

unknown smooth function, and εi is normally distributed with 

the standard deviation σi. Smoothing spline is a solution to a 

nonparametric regression problem with the function ���� i.e. �� 
Є	C2 

[a, b] in the model that minimizes the penalized residual 

sum of squares with two continuous derivatives, as given below; 

	���� 	� 	∑ ��� 	� 	������� 		 	� � ������������
�

 
�!"        (2) 

The first term in the equation is the residual sum of the 

square for the goodness of fit of the data, the second term is a 

roughness penalty, which is large when the integrated second 

derivative of a regression function ������ is also large. λ is a 

smoothing parameter. If λ approaches 0 then ����  simply 

interpolates the observations, if λ is very large, then ���� 
will be selected so that ������ is everywhere 0, which implies 

an overall linear least-squares fit the observations. 

The smoothing parameter λ plays a key role in controlling 

the trade-off between the goodness of fit represented by 

∑ ��� 	� 	�������	 
�!" and smoothness of the estimate 

measured by � �����������	�
� . The solution based on 

smoothing spline for a minimum problem in equation (2) is 

known as a “natural cubic spline” with knots at x1, …, xn. 

From this point of view, a specially structured spline 

interpolation which depends on a chosen value λ develops 

into a suitable approach of function g in a model (2). Let 

�	 � 	 ��	��"�, . . . , ��� �� be the vector of values of function 

g at the knot points �1, . . . , �#. The smoothing spline estimate 
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��$  of this vector for the fitted data �	 � 	 ��", . . . , � )%  are 

projected by; 
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where ��& is a natural cubic spline with knots at x1, …, xn for 

a fixed λ > 0, and Sλ is a well-known positive-definite 

(symmetrical) smoother matrix which depends on λ and the 

knot points x1, …, xn, but not on y. The function	��&, is the 

estimation of function g, it is obtained by cubic spline 

interpolation that depends on the condition ��&(xi) = (��)i, i = 

1, 2, …, n. 

The smoothing parameter determines the smoothing level. 

For � > = 0, �(��) equals the value of the time series at that 

time, xi. The greater the smoothing parameter the greater the 

difference between �(��) and�� . The most popular method 

used in time series analysis is the classical Autoregressive 

Moving Average (ARMA) approach; it assumes linear 

dependence on past observations and discoveries. The 

classical linear modelling was used with known data samples 

and discovered that it has its limitations [1]. The increasing 

knowledge of deviations from the known ARMA model is 

projected by Spline smoothing researchers in nonlinear time 

series analysis. Many Spline smoothing researchers have 

studied modeling of time series observations with 

Generalized Cross-Validation (GCV), Generalized Maximum 

Likelihood (GML), and Mallow’s CP criterion (MCP) 

methods [2]. The GCV method was extended to estimate the 

smoothing parameter and Autocorrelated error term, [2]. A 

smoothing spline was represented by a state-space model and 

extended the CV, GCV, and GML estimation methods to an 

Autoregressive moving average error term [3]. A Cross-

Validation method is employed to estimate some smoothing 

parameters [4] and more recently, it was extended to GML, 

GCV, and MCP methods to estimate the smoothing parameter 

when data are correlated, [5]. Almost all of these methods 

were developed for time series observations while some 

others require that the design points are equally spaced. In 

real-time series, usually, neither the function g nor the 

standard deviations ai are known, therefore E('x) cannot be 

calculated according to equation (1). However, in the case 

when �(��)  is a linear combination of�� , the Generalized 

Cross-Validation (GCV) function is one of the models that is 

often used in selecting the optimal knot, [6, 7, and 8]. It 

provides several advantages over other methods, including 

asymptotic optimal, invariance to transformation and do not 

needs a known population variance. Mallow’s CP Criterion 

(MCP) is a smooth parameter selection method that requires 

an estimated value of the known error variance [9, 10, 11]. 

The MCP method is used to select the smoothing parameter 

for spline estimation with non-Gaussian data [12] and [13]. 

From simulation study, the MCP smoothing method 

estimated knots which were close with the original knot, so 

the MCP method can be taken into consideration in choosing 

optimal knot, [14]. Numerical experiments showed that the 

direct MCP methods perform better than existing indirect 

MCP [15]. Generalized Cross-Validation (GCV), Mallow’s 

CP criterion and Generalized Maximum Likelihood (GML) 

methods were examined based on a simulation study, it was 

discovered that for large samples and because of the effect of 

replication, GCV and Mallow’s CP criterion has the same 

asymptotic result [16]. 

In this paper, the Hybrid smoothing method is developed 

by combining the unique optimal properties of GCV and 

MCP i.e. Hybrid GCV-MCP. The performance and efficiency 

of the Hybrid GCV-MCP smoothing method was compared 

with the classical GCV and MCP smoothing methods for 

predicting time-series observations. After giving a brief 

introduction of smoothing time series observation using and 

Generalized Cross-Validation (GCV) and Mallow’s CP 

Criterion (MCP) the next section presents a literature review 

on GCV and MCP, section three presents materials and 

methods. Section four compares the three methods via a 

simulation study and it application to real life data, and 

finally, the conclusion was presented in the last section. 

2. Literature Review 

Literature shall establish the fact that Generalized Cross-

validation and Mallow’s CP criterion have been applied to 

time series observations in past. Generalized Cross-

Validation (GCV) was compared with and Mallow’s CP 

criterion (MCP), it was recommended that Generalized 

Cross-Validation is a good smoothing parameter selection for 

small and medium-sized samples [17]. The smoothing spline 

method was applied to fit a curve to a noisy data set, where 

the selection of the smoothing parameter is essential. An 

improved Cp criterion for spline smoothing based on Stein’s 

unbiased risk estimate was proposed to select the smoothing 

parameter. The resulting fitted curve showed to be superior 

and more stable than commonly used selection criteria and 

possesses the same asymptotic optimality as Cp, [18]. Most 

data-driven smoothing parameter selection methods were 

compared based on large and small sample sizes. The parallel 

of Akaike’s information criterion (GFAIC) and Generalized 

Cross-Validation (GCV) is recommended as being the best 

selection criteria. For large samples, the GFAIC method 

would seem to be more appropriate while for small samples 

they proposed the implementation of GCV criterion [19]. 

Two types of results that support the use of Generalized 

Cross-Validation (GCV) for variable selection under the 

assumption of sparsity was investigated. The first type of 

result is based on the well-established links between GCV on 

one hand and Mallows’s Cp and Stein Unbiased Risk 

Estimator (SURE) on the other hand. The result states that 

GCV performs as well as Cp or SURE in a regularized or 

penalized least squares problem as an estimator of the 

prediction error for the penalty in the neighborhood of its 

optimal value [20]. In the comparison of GCV with GML via 

a Monte Carlo Method using a program written in R. It was 
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discovered that GML was better than GCV because it is 

stable and works well in all simulations and at all sample 

sizes and it does not over fit data when the sample size is 

small,[21]. MCP and CV was compared for selecting the 

optimal knots. The criteria for selecting the best model were 

based on Mean Squared Error and R-square. A simulation 

was performed on a spline truncated function with error 

generated from a Normal distribution for varied sample sizes 

and error variance. The results of the simulation study 

showed that CV estimates the knots more accurately than 

MCP [14]. Nonparametric regression problems were 

considered, a model-averaging procedure for smoothing 

spline regression problem was developed [22]. 

The main motivation of this paper is to present a new 

smoothing method to deal with the prediction of time series 

observations that yields better performance than the classical 

methods. All of the methods given above have some 

limitations when modeling time-series observations, which is 

indicated above. The introduction of the combination of GCV 

and MCP i.e. Hybrid GCV-MCP was proposed to solve the 

problem of over smoothing and over fitting of time series 

observations for the number of knots, smoothing parameters, 

and time series sizes. 

3. Research Methodology 

3.1. Data Collection 

This research was conducted to evaluate the performances 

of the three smoothing methods, i.e. GCV, MCP, and hybrid 

GCV-MCP. Time-series data were simulated by using a 

program coded in R (version 3.2.3) for time series sizes of; 

50, 100, and 150. The number of replications was 1,000 for 

each of the samples. For each simulated data set, the 

Predictive Mean Squared-Errors (PMSE) was used to 

evaluate the quality and performance of the methods. 

3.2. Equation Used for Generating Values in the Simulation 

The simulation study conducted to evaluate and compare 

the performance of the four estimation methods is given as;  

���� 	� �
# /012		 	�1          t = 1, …, 150            (4) 

Where;3 � 456° ,89	~	;�6, <)  and it is independently and 

identically distributed with zero mean and 0.8 and 1.0 

standard deviation. 

3.3. Experimental Design 

The experimental plan applied in this research work was 

designed to  

1. Three-time series sizes(T) of 50, 100 and 150 were 

considered for the simulation 

2. Four smoothing Parameters were considered, i.e. λ = 1, 

2, 3, 4 

3. Two standard deviations were considered i.e. 

="	>#�	=� 	= 	0.8	>#�	1.0 

4. Data were generated for 1,000 replications for each of 

the 3 x 4 x 2 = 24 combinations for cases T’s, λ’s and 

σ’s. 

3.4. Evaluation of the Smoothing Methods 

In this study, Predictive Mean squared error (PMSE) is 

used as quality measurement to evaluate the performance of a 

smoothing or Curve fitting procedure. PMSE is the expected 

value of the square difference between the fitted value 

implied by the predictive function �A(��) and the values of the 

observed function 	�(��) . It is used to measure the 

performance and quality of a predictor or Smoothing 

methods like Cross-Validation, Generalized Cross-Validation, 

Mallow’s CP Criterion, etc. The Predictive Mean Square 

Error (PMSE) is written mathematically as;  

BC�D(�) = 	 " 	∑ /�(��) − 	�A(��)2
� 

�	E	"           (5) 

The Predictive Mean Square Error can be divided into two 

terms, the first term is the sum of square biases of the fitted 

values while the second is the sum of variances of the fitted 

values. Where; �(��)  is observed value and �A(��)  = 

fitted/predicted/estimated value 

3.5. Generalized Cross-Validation (GCV) 

The term Generalized Cross-Validation (GCV) was 

proposed by [23] and [24] as a replacement of Cross-

Validation (CV),it is the most popular method for choosing 

the complexity of statistical models. The basic principle of 

cross-validation is to leave the data points out one at a time 

and to choose the value of λ under which the missing data 

points are best predicted by the remainder of the data. To be 

precise, let �&!"be the smoothing spline calculated from all 

the data pairs except (ti, yi), using the value λ for the 

smoothing parameter. The cross-validation choice of λ is then 

the value of λ which minimizes the Cross-Validation score; 

FG(�) 	= "
 ∑H�� − ��(��)I�                      (6) 

This is identical to the criterion for model selection in 

regression generally defined by matrix A (λ) [25] 

	J�K(�) 	= 	#!"���� , �K�                           (7) 

FG(�) = "
 ∑

HLM!N�(1M)IO
H"!PMM(&)IO

 
�E"                        (8) 

The use of related criterion was suggested, it was called 

Generalized Cross-validation, obtained from (8) by replacing 

J��(�) by its average value, #!"�QJ(�), this gives the score 

[24]. 

RFG(�) =  STUVV(&)
("! ST1WP(&))O                      (9) 

Where; RSS (λ) is the residual sum of squares, ∑HyY −
g�(tY)I�, in their study [24] also give theoretical arguments 

to show that Generalized Cross-Validation should, 

asymptotically choose the best possible value of λ in the 
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sense of minimizing the average squared error at the design 

points. This predicted good performance is borne out by 

published practical examples in [27]. The generalized 

Cross-validation method is well known for its optimal 

properties [14]. If there exists an n x n, the influence matrix, 

with the property; 

'
(
(
(
(
(
)�A , �(�")
�A , �(��)

.

.

.
�A , �(� )

	 *
+
+
+
+
+
,

 =�(�)� 

It is such that W0 (λ) can be rewritten as;  

\](�) 	= 	
∑ ��^_L_!	L^�

O`
^aT

("!�^^)O
                    (10) 

Where; >bL�K 	 ∈ 	1, 2, . . . , # 

GCV is a modified form of the CV which is a conventional 

method for choosing the smoothing parameter. The GCV 

score which is constructed by analogy to CV score can be 

obtained from the ordinary residuals by dividing by the 

factors 1 − (Sλ)ii. The approved design of  

GCV is to replace the factors 1 − (Sλ)ii in Cross Validation 

with the average score 1 − n
−1

trace (Sλ). Thus, by summing 

the squared corrected residual and factor {1 − n
−1

trace (Sλ)}
2
, 

by the example ordinary cross-validation, the GCV score 

function can be written as; 

RFG(�) = 	 1#
∑ H�	 − 	�b(�")I� 
bE"

H1	 − 	#!"�Q>ef(��)I� 

RFG(�) 	=  ST‖(h	!	V&)L‖O
i ST1W�jk(h	!V&	)lO                        (11) 

Where; n is the measurement/observations {xi, yi}, λ is 

smoothing parameters and Sλ is the ith diagonal element of a 

smoother matrix. 

3.6. Mallow’s CP Criterion 

Mallow’s CP criterion (MCP) was developed by [26] to 

estimate the fit of a regression model based on Ordinary 

Least Square. It is applied to a model selection case where 

predictor variables are present for forecasting some outcomes 

and for finding the best model involved in subset predictors. 

The smaller the value of the Cp, the relatively precise it is, 

the Cp is written mathematically as; 

CFB	(�) 	= 	 1# H‖(�& 	− 	1)�‖� 	+ 	2=��Q(�&) 	− 	=�I 

CFB	(�) = 	1# mn��	 − 	�
A&��n� 	+ 	2=��Q(�&) 	− 	=�o 

CFB	(�) 	= 	 " 
∑ pLM	!	qArs	($M)t

O`
MaT
1Wmh	!	/urs2o

O 	= 		 	v(urs	S	w)xv
O

1W�h!Vrs�
              (12) 

3.7. Hybrid GCV-MCP Method 

Hybrid is the combination of two models or methods. The 

combination of different methods have been frequently used 

in research for better performance by manipulating the 

unique strength of the two methods. A combination of GCV 

and MCP will provide more accurate/precise predicting 

model for forecasting as compared to an individual 

smoothing methods. The GCV method is well known for its 

optimal properties in smoothing estimation method [6] while 

MCP method has been successfully applied to estimate 

smoothing parameters for spline estimates with non-Gaussian 

data and to fit data appropriately [8, 24, 25] and [26]. The 

proposed Smoothing method combines the optimal properties 

of GCV and MCP. 

The minimizer of GCV is given as; 

RFG(�) 	= 	 1#
∑ H�	 −	�b(�")I� 
bE"

H1	 −	#!"�Q>ef(��)I� 

RFG(�) =  ST‖(L	!	V&)L‖O
i ST1W�jk(h	!V&	)lO 	=

 ST‖(h	!	V&)L‖O
i ST1W�jk(h	!V&	)lO (13) 

While the Mallow’s CP criterion method of is given as; 

CFB(λ) = 	 	v(urs	S	w)xv
O

1W�h!Vrs�
                       (14) 

Therefore, a new smoothing method is proposed by 

introducing an additional weighted parameter g and 

combining properties of the Generalized Cross-Validation 

(GCV) and Mallow CP criterion (MCP). The combination, 

measurement, and expression of the quantities of the two 

methods will yield an optimal performance and smoothing 

model that does not over fit data. The minimizer of the 

hybrid methods of (13) and (14) is given as; 

z�{Q
�	(�) = ��"(�) 	+ (1 − �)��(�)            (15) 

0 < � < 1, �"(�) 	= 	GCV	and	��(�) 	= 	MCP 

z�{Q
�	(�) = �  ST‖(h	!	V&)L‖O
i ST1W�jk(h	!V&	)lO 	+ (1 − �)

	‖(ur	S	w)x‖O
1W(h!V&)  (16) 

Where; n is number of observations, 0 < � < 1,	 g is 

weighted values, y = (y1, …,yn)
T
 is the smoothing function, 

�A 	= 	 (�(�"). �(� )). � )% is Sλy, Sλ= is the diagonal element 

of the smoother matrix. 

4. Simulation Study 

In this section, a simulation study is carried out to compare the 

behaviors of the Hybrid GCV-MCP smoothing methods with 

two classical smoothing methods namely; Generalized Cross-

Validation (GCV) and Mallow’s CP (MCP) criterion when 

estimating time-series observation. Before the results of 

simulation experiments, datasets for the different simulation 

combinations are generated by using codes written in the R 

3.2.3 software. Our data generation procedure, with 

accompanying descriptions, is given in Table 1. 
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Table 1. Data generation steps with explanation. 

 Steps Explanation 

Step 1. Decide on �, #��	>#�	� The sample size of the simulated dataset, number of replication and smoothing parameter 

Step 2. Produce on ��′�, �(. )	>#�	�� Nonparametric Covariate, smoothing function, random error terms 

Step 3. Generate ��′� Generate the observed or actual data point for the smoothing model 

Step 4. Generate ���′� Generate the estimated or predicted observation for the smoothing model 

Step 5. Obtain the PMSE (λ) Compute the Predictive Mean Square error 

 
For this simulation study, within the scope of Step 1, �	 =

	50, 100	>#�150, #�� 	= 1000	>#�	�	 = 	1, 2, 3	4 . The 

Nonparametric Covariate, smoothing function, random error 

terms in step 2 are generated as; 

�� =	 �!].� , =	 = 	0.8, 1.0, ��~

�	�(0,1)  and �(�) 	=
1.5� /$!].��]."� 2 − � /$!].�].]� 2, �(�) =

"
√�0 	f�� �

!�O
� �, where � is a 

constant that determines the shape of the curve. In step 

3,�(
) 	= �
# /0"2 	+ 	�� the function in step 5 used to test the 

hybrid GCV-MCP smoothing method under various conditions 

is given as; BC�D(�) = 	 " 	∑ /�(��) − 	�A(��)2
� 

�	E	" . 

Where�A(��) = ��A��and �(��) is the value at the knot �� of the 

appropriate function �. 

4.1. Smoothing Results Methods for Smoothing Parameters 

(λ = 1, 2, 3 and 4), Time (T = 50, 100 and 150) and Std. 

Deviation (σ = 0.8) 

Table 2 presents the predictive mean square error of the 

three smoothing methods, three sample sizes at 0.8 sigma 

level. It was discovered that for the GCV smoothing method, 

the predictive mean square error decreases as the time 

increases; when T = 50 the PMSE decreased from 0.053273 

to 0.027264 when T = 100 and further decreases from 

0.027264 to 0.025485 when T = 150 for smoothing function 

λ = 1. When T = 50, the predictive mean square error 

(PMSE) of the hybrid GCV-MCP smoothing method, 

decreased from 0.042392 to 0.040716 when T = 100 and 

further decreased to 0.003851 when T = 150. Furthermore, 

for the MCP smoothing method, the predictive mean square 

error decreases as the time increases; when T = 50 the PMSE 

decreased from 0.048021 to 0.034561 when T = 100 and 

further decreases from 0.034561 to 0.025485 when T = 150 

for smoothing function λ = 1.  

4.2. Smoothing Results Methods for Smoothing Parameters 

(λ = 1, 2, 3 and 4), Time (T = 50, 100 and 150) and Std. 

Deviation (σ = 1.0) 

Table 3 presents the predictive mean square error of the 

three smoothing methods and the three sample sizes at 1.0 

sigma level. It was discovered that for the GCV smoothing 

method, the predictive mean square error decreases as the 

time increases; when T = 50 the PMSE decreased from 

0.126826 to 0.0424942 when T = 100 and further decreases 

from 0.0424942 to 0.0242396 when T = 150 for smoothing 

function λ = 1. When T = 50, the predictive mean square 

error (PMSE) of the hybrid GCV-MCP smoothing method, 

decreased from 0.087162 to 0.016832 when T = 100 and 

further decreased to 0.004103 when T = 150. Furthermore, 

for the MCP smoothing method, the predictive mean square 

error decreases as the time increases; when T = 50 the PMSE 

decreased from 0.056372 to 0.044455 when T = 100 and 

further decreases from 0.044455 to 0.037378 when T = 150 

for smoothing function λ = 1.  

Table 2. PMSE result for the smoothing methods for smoothing parameters (λ = 1, 2, 3 and 4), time (T = 50, 100 and 150) and std. deviation (σ = 0.8). 

Time size 
Smoothing 

Methods 

 Smoothing Parameter levels 

λ = 1 λ = 2 λ = 3 λ = 4 

T =50 

GCV 0.053273 0.044131 0.042976 0.042599 

Hybrid 0.042390 0.071148 0.070962 0.068089 

MCP 0.048020 0.032269 0.030172 0.017179 

T = 100 

GCV 0.027264 0.021027 0.020245 0.029484 

Hybrid 0.044716 0.091883 0.081778 0.044087 

MCP 0.034561 0.024042 0.022625 0.022158 

T = 150 

GCV 0.025094 0.018843 0.018061 0.017806 

Hybrid 0.003851 0.098199 0.069462 0.002584 

MCP 0.025485 0.018456 0.017496 0.017179 

Table 3. PMSE result for the smoothing methods for smoothing parameters (λ = 1, 2, 3 and 4), time (T = 50, 100 and 150) and std. deviation (σ = 1.0). 

Time size 
Smoothing 

Methods 

 Smoothing Parameter levels 

λ = 1 λ = 2 λ = 3 λ = 4 

T =50 

GCV 0.126826 0.104707 0.101912 0.101001 

Hybrid 0.087162 0.052266 0.062848 0.065031 

MCP 0.056372 0.039990 0.037767 0.037034 

T = 100 

GCV 0.042494 0.033899 0.032822 0.032471 

Hybrid 0.068320 0.093528 0.085243 0.048527 

MCP 0.044455 0.030348 0.028460 0.027839 

T = 150 

GCV 0.024239 0.019535 0.018947 0.018755 

Hybrid 3.704103 2.900917 2.773740 2.730723 

MCP 0.0373787 0.025315 0.023706 0.023177 
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4.3. Smoothing Curves of the Time Series Observation 

Figures 1 to 6 presents the observed and estimated values of 

GCV, Hybrid and MCP after 1000 replications. From these 

plots it is observed that Hybrid and GCV have smaller 

PMSEs when compared to MCP. The plot also indicated that 

Genralized Cross-Validation (GCV), Mallow’s Cp Criterion 

(MCP) and Hybrid GCV-MCP smoothing methods provides 

a good fits for time series observations, but Hybrid GCV-

MCP and GCV smoothing methods provide a better estimates 

than MCP based on Predictive Mean Square Error (PMSE). 

And at all sample sizes. The Hbybrid method is more stable 

when the sample size is small and medium (T = 50 and 100) 

This behavior of the Hybrid smoothing method is somehow 

similar to the finding of [27] and [13]. 

 

Figure 1. Plots of the observations (...) and Estimates (---) With Smoothing Parameters Chosen by GCV, Hybrid and MCP for λ=1, 2, 3, 4 σ = 0.8 and T = 50. 

 

Figure 2. Plots of the observations (...) and Estimates (---) With Smoothing Parameters Chosen by GCV, Hybrid and MCP for λ=1, 2, 3, 4 σ = 0.8 and T = 

100. 

 

Figure 3. Plots of the observations (...) and Estimates (---) With Smoothing Parameters Chosen by GCV, Hybrid and MCP for λ=1, 2, 3, 4 σ = 0.8 and T = 

150. 

Table 4. Rank of the performance of smoothing methods for time periods = 50, 100 and 150, smoothing function = 1, 2, 3 and 4 and for std. dev. = 0.8. 

Time size 
 Smoothing Methods  

GCV Hybrid GCV-MCP MCP Preferred Method 

T =50 3 1 2 Hybrid 

T = 100 2 1 3 Hybrid 

T = 150 3 2 1 MCP 
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Table 5. Rank of the performance of smoothing methods for time periods = 50, 100 and 150, smoothing function = 1, 2, 3 and 4 and for std. dev. = 1.0. 

Time size 
 Smoothing Methods  

GCV Hybrid GCV-MCP MCP Preferred Method 

T =50 2 3 1 MCP 

T = 100 2 1 3 Hybrid 

T = 150 2 1 3 Hybrid 

 

Figure 4. Plots of the observations (...) and Estimates (---) With Smoothing Parameters Chosen by GCV, Hybrid and MCP for λ=1, 2, 3, 4 σ = 1.0 and T = 50. 

 

Figure 5. Plots of the observations (...) and Estimates (---) With Smoothing Parameters Chosen by GCV, Hybrid and MCP for λ=1, 2, 3, 4 σ = 1.0 and T = 

100. 

 

Figure 6. Plots of the observations (...) and Estimates (---) With Smoothing Parameters Chosen by GCV, Hybrid and MCP for λ=1, 2, 3, 4 σ = 1.0 and T = 

150. 

Tables 4 and 5 above present ranks and preferred 

smoothing methods of the three smoothing methods (GCV, 

Hybrid GCV-MCP, and MCP) at three time periods (i.e. T = 

50, 100 and 150) when the standard deviation is 0.8 and.  

From the results present in table 4, it can be seen that 

Hybrid GCV-MCP methods had the least predictive mean 

square error when the time series size is small and moderate 

(T = 50 and 100) while MCP smoothing method had the 

smallest predictive mean square error when the time series 

size is large (T = 150). 

From the results present in table 5, it can be seen that MCP 

smoothing methods had the least predictive mean square 

error when the time series size is small (T = 50) while Hybrid 

GCV-MCP smoothing methods had the smallest predictive 

mean square error when the time series size is small (T = 100 

and 150). 
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In summary, Hybrid GCV-MCP is the best smoothing 

method for predicting time-series observations at three time 

periods (i.e. T = 50, 100, and 150), for standard deviation (σ 

= 0.8 and 1) based on the predictive mean square error 

(PSME) criterion. This finding is quite different from, [15] 

but somehow similar to those from; [27] and [13]. 

4.3. Application of Smoothing Methods to Real Life Data 

This section is prepared to show the performance of the 

hybrid GCV-MCP smoothing method for time series 

observation. The dataset represents data from all Standard 

International Trade Classification (SITC) Export and Import 

price index in Nigeria between 2001-2018 collected from 

CBN 2018. To provide continuity, the logarithms of the All 

SITC product export price index are considered as a response 

variable (export), and import is taken as a nonparametric 

covariate (import). The right smoothing spline time series 

model is thus given by; 

�1 � ����
���Q�1� � ��f���Q�� 	 �� 	1 � � � 216 (17) 

The dataset contains information for 216 all Standard 

International Trade Classification (SITC) Export and Import 

price index in Nigeria to be used for this analysis. The 

outcomes calculated for the model in Equation (17) are given 

the following table and figure. 

Table 8 present the result for real-life data on all SITC 

export and import price index in Nigeria between 2001-2018. 

The Autocorrelation result showed Autocorrelation existed in 

the time series observation (X-squared = 96.7395, df = 1, p-

value < 2.2e-16). Table 6 showed the time series observation 

is stationary (Dickey-Fuller = -3.6471, Lag order = 5, p-value 

< 0.03021) while table 7 indicated that hybrid GCV-MCP 

smoothing method performed better than the GCV and MCP. 

Table 6. Test for autocorrelation for the real-life data for smoothing 

parameters (λ = 1, 2, 3 and 4). 

Box-Ljung test 

data: Residuals 

X-squared = 96.7395, df = 1, p-value < 2.2e-16 

H0: The data are independently distributed or the 

correlations in the population from which the samples are 

drawn are zero 

HI: The data are not independently distributed; they exhibit 

serial correlation 

Decision: Autocorrelation exist in the data  

Table 7. Stationarity test for the real-life data for smoothing parameters (λ = 

1, 2, 3 and 4). 

Augmented Dickey-Fuller Test 

data: Residuals 

Dickey-Fuller = -3.6471, Lag order = 5, p-value < 0.03021 

alternative hypothesis: stationary 

H0: The data is not stationary, there is a unit root 

HI: The data is stationary, there is no unit root 

Decision: The data is stationary, there is no unit root 

Table 8. PMSE result for the real-life data of smoothing parameters (λ = 1, 

2, 3 and 4). 

Method 1 2 3 4 

GCV 13.70312 13.59623 13.53751 13.49974 

MCP 7.796751 7.687323 7.637122 7.611105 

Hybrid 36.92479 36.69295 36.0000 36.5906 

 

Figure 7. Plots of the SITC import price index in Nigeria dataset (. . .) and 

Estimates (---) with Smoothing Parameters Chosen by Hybrid GCV-MCP for 

λ=1,2,3,4, σ = 0.8 and T = 100. 

5. Conclusions 

In this paper, the experimental results are being obtained 

by using GCV, MCP, and Hybrid GCV-MCP for predicting 

time-series observations. The performance of the Hybrid 

model is compared with Generalized Cross-Validation (GCV) 

and Mallow’s CP Criterion (MCP). GCV is used to choose 

the complexity of statistical models while Mallow’s CP 

criterion (MCP) is a powerful tool used to select smoothing 

parameters for spline estimates with non-Gaussian data. The 

result showed that MCP provided better results when 

compared to GCV for small sample size. In all, the Hybrid 

GCV-MCP method achieved good forecasted results and 

performed better than the two classical smoothing methods 

(i.e. GCV and MCP) based on the least predictive mean 

square error (PMSE) criterion. The proposed smoothing 

method was also applied to the real-life data on all SITC 

export and import price index in Nigeria between the years, 

2001-2018, result from PMSE proved that hybrid GCV-MCP 

performed better than the GCV and MCP.  

Finally, the Proposed Hybrid GCV-MCP is recommended 

as the best smoothing method for time series observations for 

mostly medium and large sample sizes. 
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