

Science Journal of Circuits, Systems and Signal Processing
2013; 2(2) : 22-28

Published online April 2, 2013 (http://www.sciencepublishinggroup.com/j/cssp)

doi: 10.11648/j.cssp.20130202.11

Novel implementations of recursive discrete wavelet
transform for real time computation with multicore
systems on chip (SOC)

Mohammad Wadood Majid, Golrokh Mirzaei, Mohsin M. Jamali

Department of Electrical Engineering & Computer Science, University of Toledo, Toledo, USA

Email address:
mohammad.wadoodmajid@rockets.utoledo.edu (M. W. Majid), mohsin.jamali@utoledo.edu (M. M. Jamali)

To cite this article:
Mohammad Wadood Majid, Golrokh Mirzaei, Mohsin M. Jamali. Novel Implementation of Recursive Discrete Wavelet Transform for

Real Time Computation with Multicore Systems on Chip (SOC), Science Journal of Circuits, Systems and Signal Processing. Vol. 2, No.

2, 2013, pp. 22-28. doi: 10.11648/j.cssp.20130202.11

Abstract: The discrete wavelet Transform (DWT) has been studied and developed in various scientific and engineering

fields. Its multi-resolution and locality nature facilitates application required for progressiveness in capturing high-frequency

details. However, when dealing with enormous data volume, the performance may drastically reduce. The multi-resolution

sub-band encoding provided by DWT enables for higher compression ratios, and progressive transformation of signals. The

widespread usage of the DWT has motivated the development of fast DWT algorithms and their tuning on all sorts of

computer systems. However, this transformation comes at the expense of additional computational complexity. Achieving

real-time or interactive compression/de-compression speed, therefore, requires a fast implementation of DWT that leverages

emerging parallel hardware systems. The recent advancement in the consumer level multicore hardware is equipped with

Single Instruction and Multiple Data (SIMD) power.In this study, Parallel Discrete Wavelet Transform has been developed

with novel Adaptive Load Balancing Algorithm (ALBA). The DWT is parallelized, partitioned, mapped and scheduled on

single core and Multicore. The Parallel DWT is developed in C# for single and Intel Quad cores as well as the combination of

C and CUDA is implemented on GPU. This brings the significant performance on a consumer level PC without extra cost.

Keywords: Discrete Wavelet Transform, Multicore, GPUs

1. Introduction

Parallel computing is the simultaneous use of multiple

computer resources to solve a computational problem by

using multiple CPUs. A computationally intensive problem

divided into discrete parts for concurrent computation in

parallel. Algorithm needs to be partitioned into optimal

number of parts and then into tasks. In this study, Novel

Adaptive Load Balancing Algorithm (ALBA) is proposed to

divide the problem into discrete parts. Intel Nehalem Quad

Core processor [1, 2] and NVIDIA GeForce GTX 260 GPU

[3-7] are two parallel processing platforms that can be

exploited for fast computation of algorithms for real time

applications.

Intel Nehalem Quad Core has four physical cores. Each

physical core has two virtual processors, running in parallel.

It has cache L1 32KB data and 32KB instruction, cache L2

256KB which is shared among virtual cores and cache L3

8MB shared between all physical cores on the chip as shown

in Fig 1.

Figure 1. Multi-core Thread Management System.

NVidia GeForce GTX 260 [3-7] commonly known as

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(2) : 22-28 23

Graphic Processing Unit (GPU) has a multiprocessor

architecture consisting of hundreds of cores as shown in Fig.

2. Each core has eight Streaming Processors (SPs) and each

core is designed to operate in a Single Instruction Multiple

Data (SIMD) fashion. Each GPU has following on-chip

memory structure.

• One 32-bit register per core.

• A parallel data cache or shared memory

• A read-only constant memory cache that is shared by

all cores allowing fast read.

• A read-only texture memory cache that is shared by

all cores and allows fast reading from the texture

memory.

• The local and global memory spaces are

implemented as read-write regions of the device

memory and are not cached.

When parallelizing any algorithm, it should be

decomposed into parts and each part is further broken down

into tasks. Each task is executed on a different core; each

task containing threads which are executed simultaneously.

To achieve the full benefits of computation power of the

multicore, algorithm must have to be divided into optimal

numbers of tasks. A task is a simple set of threads which run

on a core. Partitioning a task is very challenging and requires

optimization. There are opposing forces at work: too many

partitions add overhead and too few partitions leave

processors idle requiring optimal partitioning.

This study mainly focuses on general purpose multicore

systems such as Intel Nehalem Quad Core processor and

NVidia GeForce GTX 260 GPU in order to find the efficient

strategies for DWT that can partition, map and schedule in

these platforms. Different hardware and software techniques

are implemented to find out the efficient strategies that can

bring about the substantial performance improvement on a

consumer level PC without an additional cost.

Figure 2. GPU Architecture.

2. Related Work

The DWT has appeared in recent years as a key part of

various scientific and engineering fields also as a valuable

tool for a wide variety of image processing applications.

There are two different approaches called multi-machines

and multicore systems on chip that are used to parallelize the

DWT. There are few works that have been performed on

multi-machines to parallelize the wavelet transform in the

literature [8-10]. According to these works, the effective

way to speed up the wavelet transformation is to utilize

parallel technology. However, the parallelism is

implemented in a multi-machine network environment

which would be inevitably affected by the system

maintenance and the bandwidth speed. Therefore, the

parallel wavelet based on multi-core technology has great

significance.

Significant research work has been done on its efficient

implementation on multicore system on chip. In desktop

computing, performance problems arise out of the

differences between the memory access patterns of the main

components of 2-D-DWT, especially when large input data

is processed, which causes one of these components to

exhibit poor data locality in the implementations of the

transform. Consequently, most research is concentrated on

cache-aware DWT implementations, which exploit loop

transformations and specific data layouts to improve data

locality [8-10]. Parallel implementations of the DWT for

multiprocessor systems are usually based on the general

principles of data domain decomposition; that is, the input

data are statically or dynamically partitioned, and the

different threads perform the same work on their share of the

data [11]. Locality is even more critical in these systems, and

performance tuning also focuses on memory hierarchy

issues [12, 13]. In embedded systems for parallel

implementation of DWT, efficiency refers not only to the

execution time, but also to other design objectives such as

hardware budget or power consumption. Given these

additional constraints, several authors have shown that

Lifting Scheme (LS) produces the most efficient designs

[13]. Gnavi presented an interesting performance

comparison between LS wavelet and Frequency B-Spline

(FBS) wavelet on a programmable platform (a Texas

Instrument DSP). They assessed the real empirical

performance of both schemes in terms of execution speed in

the context of the JPEG 2000, concluding that LS was

always faster than its FBS counterpart. The actual LS gains

heavily depend on the length of the wavelet filters and the

number of LS steps, but they were lower than theoretically

expected.

In this study, focus is on general-purpose multicore

systems such as Intel Nehalem Quad Core processor and

NVidia GPU, to find the efficient strategies for DWT to

partition, map and schedule on these platforms. It involves

developing new implementation strategies following to

select the best programming model, in which the available

data parallelism is explicitly uncovered so that it can be

exploited by the hardware.

3. Discrete Wavelet Transform

3.1. One Dimension DWT

24 Mohammad Wadood Majidet al.: Novel implementation of recursive discrete wavelet transform for real time

computation with multicore systems on chip (SOC)

The Discrete Wavelet Transform is a relatively new

mathematical technique and can be used in signal processing.

In time domain signal, the independent variable is time and

the dependent variable is the amplitude. Most of the

information is hidden in the frequency content. By using

wavelet transform, the frequency information can be

obtained which is not possible by working in time-domain.

The analysis of a non-stationary signal using the Fourier

Transform and Short Time Fourier Transform does not give

satisfactory results. DWT provides the time-frequency

representation of the signal which gives multi-resolution

outlook of the signal. This resolution makes the DWT

technique superior to the Fast Fourier Transform (FFT) in

many cases.

DWT uses filter banks and special wavelet filters for the

transform and reconstruction of signals. It analyze the signal

at different frequency bands with different resolutions,

decomposes the signal into an approximation and detail

information which contains different steps as shown in Fig.

3. The 1-D discrete wavelet transform is a fast, linear

operation that operates on a data vector whose length is

usually an integer power of two. The signal is decomposed

into its constituent parts, each of these constituent parts are

high pass and low pass filtering. A high pass and low pass

filters are defined as:

 H� � ∑ x�n	. g�2k � n	� (1)

L� � ∑ x�n	. h�2k � n	� (2)

For Example, to obtain coefficients for a n sample long

signal sampled at x MHz frequency where the spanning

frequency band is zero to π ����
� . At the first level, the

signal is passed through the low pass and high pass filters.

Figure 3. Filtering with Wavelet Transform.

The high pass filter output or the details coefficients

are
�
�samples long in the frequency range of ��

�
�
��

MHz.The low pass filter output or approximation is also
�
�

samples long but spanning the frequency band of [0
�
�]

MHz. At next level, only low pass filter elements are used

for further filtering. The procedure continues, for low pass

filter elements at each level until only 1 wavelet coefficient

is computed [14-17] .

3.2. Two Dimension DWT

Wavelets allow a time series signal to be viewed in

multiple resolutions. The Haar wavelet technique is one of

the wavelet computation techniques that are appropriate for

parallel processing on a multi-core system. It takes an

average and difference of a signal with length of 2n. The

haar wavelet technique takes an average and difference of a

signal. All the wavelet algorithms work on time series with a

power of two values 2�. Each step of the wavelet transform

produces two sets of values: a set of averages and a set of

differences which are referred to as wavelet coefficients.

Each step produces a set of averages and coefficients that is

half the size of the input data. This continues until one

average and one coefficient is calculated.

The method of averaging and differencing can also be

expressed as filtering the data. Averaging corresponds to a

low pass filtering. It removes high frequencies of the data;

the averaging procedure tends to smooth the data. When the

data is averaged, move this filter along our input data.

The differencing corresponds to high pass filtering. It

removes low frequencies and responds to details. It also

responds to noise, since noise usually is located in the high

frequencies. When there is a difference in data, the filter is

moved along our input data. The low pass and high pass

filters form a filter bank referred in signal processing

language.

�� � � !� "#
√� , � "&!� "'

√� … … � ")*+#,!� "*
√� (3)

-� � � .� "#
√� , � "&.� "'

√� … … � ")*+#,.� "*
√� (4)

Where i � 1 and n is the number of samples of signal

To transform the 2-D signal, first apply the 1-D Haar

transform on each row. Take the resultant signal, and then

apply the 1-D Haar transform on each column. This gives us

the final transformed data [12].

4. Parallelization Strategies and

Distribution of Data

4.1. Hardware Techniques

4.1.1. Adaptive Load Balance Algorithm

4.1.1.1. Data level Parallelism

In order to get the best performance of the DWT, the data

is divided into optimal number of sub-data to create tasks. To

create a task is a common divide-and-conquer technique for

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(2) : 22-28 25

using the memory hierarchy effectively. Since the cache may

only be large enough to hold a small piece of data, the data

has already been removed out of the cache before it is reused.

The processor will thus continually be forced to access data

from the main memory, decreasing the algorithm's

performance. The signal is divided into tasks of smaller sub

signal, and sending these tasks to the cache L1 of each core

before moving on to the next task (sub-signal). Creating

tasks in that fashion that each task fit into cache. This better

exploits cache locality so that data in the cache can be reused

before being replaced. The level of performance benefit

from tasking depends on the size of the task and the cache

sizes. The idea is to partition the signal into uniform tasks so

that tasks are carried out task by task. Choosing the optimal

task size is very important, which is being sent into L1 cache

so that the cache misses are minimized. DWT algorithm is

adjusted for execution in multi-processor, especially

cache-memory where the communication of data between

processors does not need to be planned in advance, so

distinct sub-signal can be executed on different processors.

With data level parallelism, the goal is to maximize the

utilization of cache memory for each core. In addition to the

use of parallelism, it is of great importance to use memory

resources efficiently, as it is apparent that the maximum

performance obtainable from current microprocessors is

mostly limited by the memory access. Since the cache

cannot hold a large part of data, it can be removed out of the

cache before it is reused. The processor will thus be

continuously forced to access data from the main memory,

decreasing the algorithm's performance. Memory hierarchy

optimization performance is obtained from current

microprocessors with row - major layout.

Analysis of the profiler indicates that if installed RAM in

a computer system is between 2GB to 4GB, then 40% of L1

cache is consumed by the Operating System (OS) of each

core.

The float data type takes 4 bytes for each data point. To

find the maximum number of samples that the cache L1 can

hold can be calculated as:

123)4, �)56#. 56#78.�,
9 (5)

Where

• 4:; is total L1 cache (32KB)

• 4:; 7 0.4 is cache used by operating system

• D is the data type

• Max (C) is maximum data points to be stored into

the available L1 cache.

Therefore the maximum data points which can be stored

in L1 cache would be 4864 samples. In this way, each sub

problem should not be more than 4864 samples to get the

maximum performance of L1 cache of each core. Eqn. 4 and

5 are used to calculate the total bytes for all data points.

Therefore the maximum data points which can be stored

in L1 cache would be 4864 samples. In this way, each sub

problem should not be more than 4864 samples to get the

maximum performance of L1 cache of each core. Eqn. 4 and

5 are used to calculate the total bytes for all data points.

Mem) Bytes, � D 7)L F 1, (6)

Where

D is the data type

L is the total number of data points

Mem is the total bytes for all data points

1 is considered as an extra element as OS required four

bytes for creation of an instance of an object.

LG � �)�,
 HI�)J, (7)

Where LG is total number of tasks.

If the number of samples is less than or equal to LG, then

the entire signal is considered as a single task. Otherwise the

signal is divided into n sub-signals where each sub-signal is

considered as a task as shown in the following pseudo code.

In this work, it has been found that most of the time, the data

is greater than LG samples.

The creating task algorithm is as follows;

• The input signal x(n) is store as data points in to

array

• Calculate maximum data points to be stored into

available L1 cache as shown in Eqn. 5.

• Calculate total bytes for all data points as shown in

Eqn. 6

• Calculate total number of tasks shown in Eqn. 7

• If Max(C)>= Memhen consider as a task

Otherwise

• x � KL�. M
KL�. N

• y � x � round)x,

• if y T 0.5

n � round)x,

else

n � x

for 1 to n

Task� � x Where i=1,2…..n,Task�!; � X)n – x, 7
 round)x,X

4.1.1.2. Task Level Parallelism

Thread level parallelism is a form of parallelization on the

thread level across multiple cores in the parallel computing

environment. A thread is the smallest unit of processing

scheduled within a task. In thread level parallelism, every

virtual core is assigned a thread and a task is said to be

completed when all the threads within the task are executed

by the virtual cores. The processor used in this study is Intel

Nehalem Quad Core processor which has four physical

cores where each physical core has two virtual processors

and GForce GTX 260 has hundreds of cores. Each GPU core

has eight Streaming Processors (SPs) running in parallel and

sharing the workload between them. After sending the

26 Mohammad Wadood Majidet al.: Novel implementation of recursive discrete wavelet transform for real time

computation with multicore systems on chip (SOC)

tasks to different physical cores, parallelism can be

improved by using the thread level parallelism. The tasks are

assigned to the physical cores and threads are assigned to the

virtual processors in case of multicore and streaming

processor for GPU. This reduces the task execution time

considerably. In this study, since there are two virtual

processors, the task execution time reduces to 40%. The

low pass and high pass filter apply to the incoming signal.

The received signal is divided into different number of tasks

depending upon the L1 cache. The tasks are sent to task

scheduler and then to different cores. Furthermore, the

threads which are low pass and high pass filter of each task

on each core are scheduled again in parallel to execute on

virtual cores. The contribution in this part is to efficiently

use the load balancing by using the thread level parallelism.

4.2. Software Techniques

4.2.1. Cache Optimization

A jagged array is an array whose elements are in the form

arrays. Jagged arrays have certain advantages over

traditional arrays. They can be more space efficient, because

not all rows must have the same number of columns. Jagged

arrays are faster to access elements due to optimization in

the run time. Jagged arrays can be effectively used for

enhancing the performance with high hierarchy cache

memory architecture on multi-core. They can be more space

efficient as array elements can of different size. In this way

jagged arrays can be effectively used for enhancing the

performance with high hierarchy cache memory architecture

on multi-core. Traditional and jaggad arrays are used to store

the signal and then the result is compared

4.2.2. Loop Fusion

Loop fusion is a transformation which takes two adjacent

loops (Low pass Filter and High pass Filter) having the same

iteration space traversal and combines their bodies into a

single loop. Loop fusion also called loop jamming is the

inverse transformation of loop distribution or loop fission

which breaks a single loop into multiple loops with the same

iteration space. Loop fusion is allowed as long as there are

no output dependencies exits. Fusing two loops results in a

single loop, which contains more instructions in its body and

therefore offers increased instruction level parallelism.

Furthermore, only one loop is executed, thus reducing the

total loop overhead by approximately a factor of two. Loop

fusion also improves data locality. Assume that two

consecutive loops perform global sweeps through an array

as in the code shown in pseudo code bellow.

4.2.3. Row Major

The cache hit performance is improved by the concept of

row-major organization. The element of the matrix is

accessed column wise, and therefore is not in sequential

order in memory. This is due to the fact that matrices are

stored in memory as row-major order. As a result, the DWT

algorithm is bandwidth limited and displays poor

performance and low efficiency because of time spent in

loading data rather than computing when performing the

1-D Haar Transform on each column. In order to optimize

the performance, transpose the data matrix and applied the

1-D Haar transform on each row as shown in Fig. 4.

Figure 4. Load and compute from cache with Row-Major technique.

5. Experimental Setup and Conclusion

DWT algorithmhas been parallelized and implemented on

Intel Nehalem Quad Cores and NVidia GeForce GTX 260.

Moreover, the algorithm is also implemented on the single

core for comparison purposes. The algorithm is developed

with visual studio.net 2010 and uses C#for Intel Nehalem

Quad Core. It uses combination of C and CUDA for its

implementation on NVidia GeForce GTX 260 GPU.

DWT has been simulated using traditional parallelism and

proposed adaptive load balancing algorithm on single and

multicore systems. Results are shown in Table 1. It can be

seen that adaptive load balancing with equal number of tasks

provides minimum computation time. The parallel

computation is further improved with different software

techniques. Table 2 shows the improvement using different

software techniques. The overall comparison of single and

multicore (Intel Nehalem Quad Core and NVidia GeForce

GTX 260 GPU) with different software techniques are

shown in Fig. 5.

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(2) : 22-28 27

Table 1. Computation Time of Load Adaptive and Non-Load Adaptive Algorithm in milliseconds.

HARDWARE TECHNIQUES

Traditional Parallelization Adaptive Load Balancing

Un-Equal Tasks Equal Tasks Un-Equal Tasks Equal Tasks

Data

Level

Thread

Level
Total

Data

Level

Thread

Level
Total

Data

Level

Thread

Level
Total

Data

Level

Thread

Level
Total

GTX 260 3.215 2.291 5.506 2.873 2.421 5.294 2.053 1.772 3.825 1.964 1.154 3.118

Nehalem 3.363 2.493 5.857 3.040 2.306 5.346 2.128 1.812 3.941 2.085 1.667 3.752

Single core

18.127

18.127

14.864

14.864

Improvement
GTX 260 (3.292)

Nehalem (3.090)

GTX 260 (3.424)

Nehalem (3.390)

GTX 260 (3.886)

Nehalem (3.771)

GTX 260 (4.767)

Nehalem (3.961)

Table 2. Improvement with Software Techniques.

SOFTWARE TECHNIQUES

Nehalem GTX 260

Cache

Optimization

Loop

Fusion

Row

Major

Cache

Optimization

Loop

Fusion

Row

Major

2.744 2.250 1.350 2.650 2.094 1.193

Figure 5. Improvement with Software Techniques.

Simulation results show that the proposed algorithm

(ALBA) outperformed Traditional Parallelization algorithm.

Thus the DWT algorithm implemented using hardware

technique on Nehalem Quad Cores and GeForce GTX 260

consumed very less time compared to that performed by

single core. Improvement was also observed in case of equal

and unequal data points in tasks using traditional

parallelization and proposed ALBA. The GTX 260 showed

an improvement of 4.7 times and Nehalem showed an

improvement of 3.9 times compared to the single core for

equal data point in the tasks with proposed ALBA. It is

concluded that the tasks with equal data points gave better

performance as compared to the tasks with un-equal data

points.

The computation time was further improved with

different software techniques. However, the improvement

was observed on both Intel Nehalem Quad Core and NVidia

GeForce GTX 260 GPU. It is perceived that Cached

Optimization technique provided further 12% improvement

for Nehalem and 14.87% for GTX 270. Furthermore, Loop

Fusion and Row Major improved the computation time

17.97% for Nehalem, 21% for GTX 270 and 40.13% for

Nehalem and 43.25% for GTX respectively. Parallelism has

been exploited for efficient use of available memory

hierarchy. It is also concluded that the NVidia GeForce GTX

270 GPU provides better computational performance than

the Intel Nehalem Quad. This result is in line with our own

intuition that the GPU performs better than the general

purpose Intel Nehalem Quad Core.

Reference

[1] Intel Corporation, ”Intel Nehalem 2010” Available from:
http://www.intel.com/technology/architecture-silicon/next-g
en.

[2] Singhal, R., “Inside Intel ® Nest Generation Nehalem
Microarchitecture.” 2009.

[3] NVidiaCorporation, “NVIDIA CUDA Compute Unified
Device Architecture, Programming Guide, Version 4.0”
2012.

[4] NVidiaCorporation, “NVIDIA GeForce GPU Architecture
Overview, Technical Brief”, November 2010.

[5] NVidiaCorporation,“GeForce GTX 260 2011”, Available
from:http://www.nvidia.com/object/product_geforce_gtx_26
0_us.html.

[6] NVidiaCorporation,“CUDA Software Development Kit 5.0”,
Available
from:https://developer.nvidia.com/cuda-downloads.2012;

[7] NVidiaCorporation, “Get Started - Parallel Computing”,

28 Mohammad Wadood Majidet al.: Novel implementation of recursive discrete wavelet transform for real time

computation with multicore systems on chip (SOC)

2012.

[8] JeiH. I., “Parallel Image Compression and Decompression
based on Wavelet Principle on Multi-core Cluster”, Inner
Mongolian University, 2008.

[9] University of Tsinghus, “The writing group of the multi-core
series of the textbooks: Multi-core programming”, The Press
of the Tsinghua University, Beijing2007.

[10] Ling Y., “Parallel wavelet analysis based on multi-core
cluster.”,2005.

[11] Chatterjee, S.B. Cache-Efficient Wavelet Lifting in JPEG
2000. in IEEE Conference on Multimedia and Expo. 2002.

[12] A. Shahbahrami, B.J., and S. Vassiliadis, “Improving the
Memory Behavior of Vertical Filtering in the Discrete
Wavelet Transform”, Third Conf. Computing Frontiers
(CF ’06)2006. p. 253-260.

[13] P. Meerwald, R.N., and A. Uh.,“Cache Issues with
JPEG2000 Wavelet Lifting”, SPIE Electronic Imaging,
Visual Comm. and Image Processing. 2002.

[14] Daubechies, I., “The wavelet transforms time-frequency
localization and signal analysis”, IEEE Transitions on
Information Theory, 2002.

[15] ImanElyasi, S.Z., “Elimination Noise by Adaptive Wavelet
Threshold”, World Academy of Science, Engineering and
Technology 2000.

[16] Kaiser, G., Friendly Guide To Wavelets1994: Birkhauser.

[17] Polikar, R., “The Engineer's Ultimate Guide to Wavelet
Analysis”, Iowa State University 2000.

