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Abstract: The discrete wavelet Transform (DWT) has been studied and developed in various scientific and engineering 

fields. Its multi-resolution and locality nature facilitates application required for progressiveness in capturing high-frequency 

details. However, when dealing with enormous data volume, the performance may drastically reduce. The multi-resolution 

sub-band encoding provided by DWT enables for higher compression ratios, and progressive transformation of signals. The 

widespread usage of the DWT has motivated the development of fast DWT algorithms and their tuning on all sorts of 

computer systems. However, this transformation comes at the expense of additional computational complexity. Achieving 

real-time or interactive compression/de-compression speed, therefore, requires a fast implementation of DWT that leverages 

emerging parallel hardware systems. The recent advancement in the consumer level multicore hardware is equipped with 

Single Instruction and Multiple Data (SIMD) power.In this study, Parallel Discrete Wavelet Transform has been developed 

with novel Adaptive Load Balancing Algorithm (ALBA). The DWT is parallelized, partitioned, mapped and scheduled on 

single core and Multicore. The Parallel DWT is developed in C# for single and Intel Quad cores as well as the combination of 

C and CUDA is implemented on GPU. This brings the significant performance on a consumer level PC without extra cost. 
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1. Introduction 

Parallel computing is the simultaneous use of multiple 

computer resources to solve a computational problem by 

using multiple CPUs. A computationally intensive problem 

divided into discrete parts for concurrent computation in 

parallel. Algorithm needs to be partitioned into optimal 

number of parts and then into tasks. In this study, Novel 

Adaptive Load Balancing Algorithm (ALBA) is proposed to 

divide the problem into discrete parts. Intel Nehalem Quad 

Core processor [1, 2] and NVIDIA GeForce GTX 260 GPU 

[3-7] are two parallel processing platforms that can be 

exploited for fast computation of algorithms for real time 

applications. 

Intel Nehalem Quad Core has four physical cores. Each 

physical core has two virtual processors, running in parallel. 

It has cache L1 32KB data and 32KB instruction, cache L2 

256KB which is shared among virtual cores and cache L3 

8MB shared between all physical cores on the chip as shown 

in Fig 1. 

 

Figure 1. Multi-core Thread Management System. 

NVidia GeForce GTX 260 [3-7] commonly known as 
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Graphic Processing Unit (GPU) has a multiprocessor 

architecture consisting of hundreds of cores as shown in Fig. 

2. Each core has eight Streaming Processors (SPs) and each 

core is designed to operate in a Single Instruction Multiple 

Data (SIMD) fashion. Each GPU has following on-chip 

memory structure. 

• One 32-bit register per core. 

• A parallel data cache or shared memory 

• A read-only constant memory cache that is shared by 

all cores allowing fast read. 

• A read-only texture memory cache that is shared by 

all cores and allows fast reading from the texture 

memory. 

• The local and global memory spaces are 

implemented as read-write regions of the device 

memory and are not cached. 

When parallelizing any algorithm, it should be 

decomposed into parts and each part is further broken down 

into tasks. Each task is executed on a different core; each 

task containing threads which are executed simultaneously. 

To achieve the full benefits of computation power of the 

multicore, algorithm must have to be divided into optimal 

numbers of tasks. A task is a simple set of threads which run 

on a core. Partitioning a task is very challenging and requires 

optimization. There are opposing forces at work: too many 

partitions add overhead and too few partitions leave 

processors idle requiring optimal partitioning. 

This study mainly focuses on general purpose multicore 

systems such as Intel Nehalem Quad Core processor and 

NVidia GeForce GTX 260 GPU in order to find the efficient 

strategies for DWT that can partition, map and schedule in 

these platforms. Different hardware and software techniques 

are implemented to find out the efficient strategies that can 

bring about the substantial performance improvement on a 

consumer level PC without an additional cost. 

 

Figure 2. GPU Architecture. 

2. Related Work 

The DWT has appeared in recent years as a key part of 

various scientific and engineering fields also as a valuable 

tool for a wide variety of image processing applications. 

There are two different approaches called multi-machines 

and multicore systems on chip that are used to parallelize the 

DWT. There are few works that have been performed on 

multi-machines to parallelize the wavelet transform in the 

literature [8-10]. According to these works, the effective 

way to speed up the wavelet transformation is to utilize 

parallel technology. However, the parallelism is 

implemented in a multi-machine network environment 

which would be inevitably affected by the system 

maintenance and the bandwidth speed. Therefore, the 

parallel wavelet based on multi-core technology has great 

significance. 

Significant research work has been done on its efficient 

implementation on multicore system on chip. In desktop 

computing, performance problems arise out of the 

differences between the memory access patterns of the main 

components of  2-D-DWT, especially when large input data 

is processed, which causes one of these components to 

exhibit poor data locality in the  implementations of the 

transform. Consequently, most research is concentrated on 

cache-aware DWT implementations, which exploit loop 

transformations and specific data layouts to improve data 

locality [8-10]. Parallel implementations of the DWT for 

multiprocessor systems are usually based on the general 

principles of data domain decomposition; that is, the input 

data are statically or dynamically partitioned, and the 

different threads perform the same work on their share of the 

data [11]. Locality is even more critical in these systems, and 

performance tuning also focuses on memory hierarchy 

issues [12, 13]. In embedded systems for parallel 

implementation of DWT, efficiency refers not only to the 

execution time, but also to other design objectives such as 

hardware budget or power consumption. Given these 

additional constraints, several authors have shown that 

Lifting Scheme (LS) produces the most efficient designs 

[13]. Gnavi presented an interesting performance 

comparison between LS wavelet and Frequency B-Spline 

(FBS) wavelet on a programmable platform (a Texas 

Instrument DSP). They assessed the real empirical 

performance of both schemes in terms of execution speed in 

the context of the JPEG 2000, concluding that LS was 

always faster than its FBS counterpart. The actual LS gains 

heavily depend on the length of the wavelet filters and the 

number of LS steps, but they were lower than theoretically 

expected. 

In this study, focus is on general-purpose multicore 

systems such as Intel Nehalem Quad Core processor and 

NVidia GPU, to find the efficient strategies for DWT to 

partition, map and schedule on these platforms. It involves 

developing new implementation strategies following to 

select the best programming model, in which the available 

data parallelism is explicitly uncovered so that it can be 

exploited by the hardware. 

3. Discrete Wavelet Transform 

3.1. One Dimension DWT 
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The Discrete Wavelet Transform is a relatively new 

mathematical technique and can be used in signal processing. 

In time domain signal, the independent variable is time and 

the dependent variable is the amplitude. Most of the 

information is hidden in the frequency content. By using 

wavelet transform, the frequency information can be 

obtained which is not possible by working in time-domain. 

The analysis of a non-stationary signal using the Fourier 

Transform and Short Time Fourier Transform does not give 

satisfactory results. DWT provides the time-frequency 

representation of the signal which gives multi-resolution 

outlook of the signal. This resolution makes the DWT 

technique superior to the Fast Fourier Transform (FFT) in 

many cases.  

DWT uses filter banks and special wavelet filters for the 

transform and reconstruction of signals. It analyze the signal 

at different frequency bands with different resolutions, 

decomposes the signal into an approximation and detail 

information which contains different steps as shown in Fig. 

3. The 1-D discrete wavelet transform is a fast, linear 

operation that operates on a data vector whose length is 

usually an integer power of two. The signal is decomposed 

into its constituent parts, each of these constituent parts are 

high pass and low pass filtering. A high pass and low pass 

filters are defined as: 

 H�  � ∑ x�n	. g�2k � n	�               (1) 

L�  � ∑ x�n	. h�2k � n	�                     (2) 

For Example, to obtain coefficients for a n sample long 

signal sampled at x MHz frequency where the spanning 

frequency band is zero to π ����
� .  At the first level, the 

signal is passed through the low pass and high pass filters. 

 

Figure 3. Filtering with Wavelet Transform. 

The high pass filter output or the details coefficients 
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�
�samples long in the frequency range of ��
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�
�� 

MHz.The low pass filter output or approximation is also 
�
� 

samples long but spanning the frequency band of [0   
�
�] 

MHz. At next level, only low pass filter elements are used 

for further filtering. The procedure continues, for low pass 

filter elements at each level until only 1 wavelet coefficient 

is computed [14-17] . 

3.2. Two Dimension DWT 

Wavelets allow a time series signal to be viewed in 

multiple resolutions. The Haar wavelet technique is one of 

the wavelet computation techniques that are appropriate for 

parallel processing on a multi-core system. It takes an 

average and difference of a signal with length of 2n. The 

haar wavelet technique takes an average and difference of a 

signal. All the wavelet algorithms work on time series with a 

power of two values 2�. Each step of the wavelet transform 

produces two sets of values: a set of averages and a set of 

differences which are referred to as wavelet coefficients. 

Each step produces a set of averages and coefficients that is 

half the size of the input data. This continues until one 

average and one coefficient is calculated. 

The method of averaging and differencing can also be 

expressed as filtering the data. Averaging corresponds to a 

low pass filtering. It removes high frequencies of the data; 

the averaging procedure tends to smooth the data. When the 

data is averaged, move this filter along our input data. 

The differencing corresponds to high pass filtering. It 

removes low frequencies and responds to details. It also 

responds to noise, since noise usually is located in the high 

frequencies. When there is a difference in data, the filter is 

moved along our input data. The low pass and high pass 

filters form a filter bank referred in signal processing 

language. 

�� �  � !� "#
√� , � "&!� "'

√� … … � ")*+#,!� "*
√�     (3) 

-� �  � .� "#
√� , � "&.� "'
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√�     (4) 

Where i � 1 and n is the number of samples of signal 

To transform the 2-D signal, first apply the 1-D Haar 

transform on each row. Take the resultant signal, and then 

apply the 1-D Haar transform on each column. This gives us 

the final transformed data [12]. 

4. Parallelization Strategies and 

Distribution of Data 

4.1. Hardware Techniques 

4.1.1. Adaptive Load Balance Algorithm 

4.1.1.1. Data level Parallelism 

In order to get the best performance of the DWT, the data 

is divided into optimal number of sub-data to create tasks. To 

create a task is a common divide-and-conquer technique for 
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using the memory hierarchy effectively. Since the cache may 

only be large enough to hold a small piece of data, the data 

has already been removed out of the cache before it is reused. 

The processor will thus continually be forced to access data 

from the main memory, decreasing the algorithm's 

performance. The signal is divided into tasks of smaller sub 

signal, and sending these tasks to the cache L1 of each core 

before moving on to the next task (sub-signal). Creating 

tasks in that fashion that each task fit into cache. This better 

exploits cache locality so that data in the cache can be reused 

before being replaced. The level of performance benefit 

from tasking depends on the size of the task and the cache 

sizes. The idea is to partition the signal into uniform tasks so 

that tasks are carried out task by task. Choosing the optimal 

task size is very important, which is being sent into L1 cache 

so that the cache misses are minimized. DWT algorithm is 

adjusted for execution in multi-processor, especially 

cache-memory where the communication of data between 

processors does not need to be planned in advance, so 

distinct sub-signal can be executed on different processors. 

With data level parallelism, the goal is to maximize the 

utilization of cache memory for each core. In addition to the 

use of parallelism, it is of great importance to use memory 

resources efficiently, as it is apparent that the maximum 

performance obtainable from current microprocessors is 

mostly limited by the memory access. Since the cache 

cannot hold a large part of data, it can be removed out of the 

cache before it is reused. The processor will thus be 

continuously forced to access data from the main memory, 

decreasing the algorithm's performance. Memory hierarchy 

optimization performance is obtained from current 

microprocessors with row - major layout. 

Analysis of the profiler indicates that if installed RAM in 

a computer system is between 2GB to 4GB, then 40% of L1 

cache is consumed by the Operating System (OS) of each 

core. 

The float data type takes 4 bytes for each data point. To 

find the maximum number of samples that the cache L1 can 

hold can be calculated as: 

123 )4,  �  )56#. 56#78.�,
9         (5) 

Where 

• 4:; is total L1 cache (32KB) 

• 4:; 7 0.4  is cache used by operating system 

• D is the data type 

• Max (C) is maximum data points to be stored into 

the available L1 cache. 

Therefore the maximum data points which can be stored 

in L1 cache would be 4864 samples. In this way, each sub 

problem should not be more than 4864 samples to get the 

maximum performance of L1 cache of each core. Eqn. 4 and 

5 are used to calculate the total bytes for all data points. 

Therefore the maximum data points which can be stored 

in L1 cache would be 4864 samples. In this way, each sub 

problem should not be more than 4864 samples to get the 

maximum performance of L1 cache of each core. Eqn. 4 and 

5 are used to calculate the total bytes for all data points. 

Mem) Bytes, �   D 7  )L F 1,           (6) 

Where  

D is the data type 

L is the total number of data points 

Mem is the total bytes for all data points   

1 is considered as an extra element as OS required four 

bytes for creation of an instance of an object. 

LG � � )�,
 HI� )J,                              (7) 

Where LG is total number of tasks. 

If the number of samples is less than or equal to LG, then 

the entire signal is considered as a single task. Otherwise the 

signal is divided into n sub-signals where each sub-signal is 

considered as a task as shown in the following pseudo code. 

In this work, it has been found that most of the time, the data 

is greater than LG samples. 

The creating task algorithm is as follows; 

• The input signal x(n) is store as data points in to 

array 

• Calculate maximum data points to be stored into 

available L1 cache as shown in Eqn. 5. 

• Calculate total bytes for all data points as shown in 

Eqn. 6 

• Calculate total number of  tasks  shown in Eqn. 7 

• If Max(C)>= Memhen consider as a task 

Otherwise 

• x �  KL�.  M
KL�.  N 

• y � x � round)x, 

• if y T 0.5 

n � round)x, 

else 

n � x 

for 1 to n 

Task� � x Where i=1,2…..n,Task�!;  �  X)n – x,  7
 round)x,X 

4.1.1.2. Task Level Parallelism 

Thread level parallelism is a form of parallelization on the 

thread level across multiple cores in the parallel computing 

environment. A thread is the smallest unit of processing 

scheduled within a task. In thread level parallelism, every 

virtual core is assigned a thread and a task is said to be 

completed when all the threads within the task are executed 

by the virtual cores. The processor used in this study is Intel 

Nehalem Quad Core processor which has four physical 

cores where each physical core has two virtual processors 

and GForce GTX 260 has hundreds of cores. Each GPU core 

has eight Streaming Processors (SPs) running in parallel and 

sharing the workload between them.  After sending the 
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tasks to different physical cores, parallelism can be 

improved by using the thread level parallelism. The tasks are 

assigned to the physical cores and threads are assigned to the 

virtual processors in case of multicore and streaming 

processor for GPU. This reduces the task execution time 

considerably. In this study, since there are two virtual 

processors, the task execution time reduces to 40%.  The 

low pass and high pass filter apply to the incoming signal. 

The received signal is divided into different number of tasks 

depending upon the L1 cache. The tasks are sent to task 

scheduler and then to different cores. Furthermore, the 

threads which are low pass and high pass filter of each task 

on each core are scheduled again in parallel to execute on 

virtual cores. The contribution in this part is to efficiently 

use the load balancing by using the thread level parallelism. 

4.2. Software Techniques 

4.2.1. Cache Optimization 

A jagged array is an array whose elements are in the form 

arrays. Jagged arrays have certain advantages over 

traditional arrays. They can be more space efficient, because 

not all rows must have the same number of columns. Jagged 

arrays are faster to access elements due to optimization in 

the run time. Jagged arrays can be effectively used for 

enhancing the performance with high hierarchy cache 

memory architecture on multi-core. They can be more space 

efficient as array elements can of different size. In this way 

jagged arrays can be effectively used for enhancing the 

performance with high hierarchy cache memory architecture 

on multi-core. Traditional and jaggad arrays are used to store 

the signal and then the result is compared 

4.2.2. Loop Fusion 

Loop fusion is a transformation which takes two adjacent 

loops (Low pass Filter and High pass Filter) having the same 

iteration space traversal and combines their bodies into a 

single loop. Loop fusion also called loop jamming is the 

inverse transformation of loop distribution or loop fission 

which breaks a single loop into multiple loops with the same 

iteration space. Loop fusion is allowed as long as there are 

no output dependencies exits. Fusing two loops results in a 

single loop, which contains more instructions in its body and 

therefore offers increased instruction level parallelism. 

Furthermore, only one loop is executed, thus reducing the 

total loop overhead by approximately a factor of two. Loop 

fusion also improves data locality. Assume that two 

consecutive loops perform global sweeps through an array 

as in the code shown in pseudo code bellow. 

4.2.3. Row Major 

The cache hit performance is improved by the concept of 

row-major organization. The element of the matrix is 

accessed column wise, and therefore is not in sequential 

order in memory. This is due to the fact that matrices are 

stored in memory as row-major order. As a result, the DWT 

algorithm is bandwidth limited and displays poor 

performance and low efficiency because of time spent in 

loading data rather than computing when performing the 

1-D Haar Transform on each column. In order to optimize 

the performance, transpose the data matrix and applied the 

1-D Haar transform on each row as shown in Fig. 4. 

 

Figure 4. Load and compute from cache with Row-Major technique. 

5. Experimental Setup and Conclusion 

DWT algorithmhas been parallelized and implemented on 

Intel Nehalem Quad Cores and NVidia GeForce GTX 260. 

Moreover, the algorithm is also implemented on the single 

core for comparison purposes. The algorithm is developed 

with visual studio.net 2010 and uses C#for Intel Nehalem 

Quad Core. It uses combination of C and CUDA for its 

implementation on NVidia GeForce GTX 260 GPU. 

DWT has been simulated using traditional parallelism and 

proposed adaptive load balancing algorithm on single and 

multicore systems. Results are shown in Table 1. It can be 

seen that adaptive load balancing with equal number of tasks 

provides minimum computation time. The parallel 

computation is further improved with different software 

techniques. Table 2 shows the improvement using different 

software techniques. The overall comparison of single and 

multicore (Intel Nehalem Quad Core and NVidia GeForce 

GTX 260 GPU) with different software techniques are 

shown in Fig. 5. 
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Table 1. Computation Time of Load Adaptive and Non-Load Adaptive Algorithm in milliseconds. 

HARDWARE TECHNIQUES 

 

Traditional Parallelization Adaptive Load Balancing 

Un-Equal Tasks Equal Tasks Un-Equal Tasks Equal Tasks 

Data 

Level 

Thread 

Level 
Total 

Data 

Level 

Thread 

Level 
Total 

Data 

Level 

Thread 

Level 
Total 

Data 

Level 

Thread 

Level 
Total 

GTX 260 3.215 2.291 5.506 2.873 2.421 5.294 2.053 1.772 3.825 1.964 1.154 3.118 

Nehalem 3.363 2.493 5.857 3.040 2.306 5.346 2.128 1.812 3.941 2.085 1.667 3.752 

Single core 
 

18.127 
 

18.127 
 

14.864 
 

14.864 

Improvement 
GTX 260 (3.292) 

Nehalem (3.090) 

GTX 260 (3.424) 

Nehalem (3.390) 

GTX 260 (3.886) 

Nehalem (3.771) 

GTX 260 (4.767) 

Nehalem (3.961) 
     

Table 2.  Improvement with Software Techniques. 

SOFTWARE TECHNIQUES 

Nehalem GTX 260 

Cache 

Optimization 

Loop 

Fusion 

Row 

Major 

Cache 

Optimization 

Loop 

Fusion 

Row 

Major 

2.744 2.250 1.350 2.650 2.094 1.193 

 

Figure 5. Improvement with Software Techniques. 

Simulation results show that the proposed algorithm 

(ALBA) outperformed Traditional Parallelization algorithm. 

Thus the DWT algorithm implemented using hardware 

technique on Nehalem Quad Cores and GeForce GTX 260 

consumed very less time compared to that performed by 

single core. Improvement was also observed in case of equal 

and unequal data points in tasks using traditional 

parallelization and proposed ALBA. The GTX 260 showed 

an improvement of 4.7 times and Nehalem showed an 

improvement of 3.9 times compared to the single core for 

equal data point in the tasks with proposed ALBA. It is 

concluded that the tasks with equal data points gave better 

performance as compared to the tasks with un-equal data 

points. 

The computation time was further improved with 

different software techniques. However, the improvement 

was observed on both Intel Nehalem Quad Core and NVidia 

GeForce GTX 260 GPU. It is perceived that Cached 

Optimization technique provided further 12% improvement 

for Nehalem and 14.87% for GTX 270. Furthermore, Loop 

Fusion and Row Major improved the computation time 

17.97% for Nehalem, 21% for GTX 270 and 40.13% for 

Nehalem and 43.25% for GTX respectively. Parallelism has 

been exploited for efficient use of available memory 

hierarchy. It is also concluded that the NVidia GeForce GTX 

270 GPU provides better computational performance than 

the Intel Nehalem Quad. This result is in line with our own 

intuition that the GPU performs better than the general 

purpose Intel Nehalem Quad Core. 
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