

Science Journal of Circuits, Systems and Signal Processing
2013; 2(2) : 29-36

Published online April 2, 2013 (http://www.sciencepublishinggroup.com/j/cssp)

doi: 10.11648/j.cssp.20130202.12

Parallel implementation of the wideband DOA algorithm
on single core, multicore, GPU and IBM cell BE processor

Mohammad Wadood Majid
*
, Todd E. Schmuland, Mohsin M. Jamali

*

Department of Electrical Engineering & Computer Science, University of Toledo, Ohio, USA

Email address:
mohammad.wadoodmajid@rockets.utoledo.edu (M. W. Majid), mohsin.jamali@utoledo.edu (M. M. Jamali)

To cite this article:
Mohammad Wadood Majid, Todd E. Schmuland, Mohsin M. Jamali. Parallel Implementation of the Wideband DOA Algorithm on Single

Core, Multicore, Gpu and Ibm Cell be Processor, Science Journal of Circuits, Systems and Signal Processing.Vol. 2, No. 2, 2013,

pp.29-36. doi: 10.11648/j.cssp.20130202.12

Abstract: The Multiple Signal Classification (MUSIC) algorithm is a powerful technique for determining the Direction of

Arrival (DOA) of signals impinging on an antenna array.The algorithm is serial based, mathematically intensive, and requires

substantial computing power to realize in real-time.Recently, multi-core processors are becoming more prevalent and af-

fordable.The challenge of adapting existing serial based algorithms to parallel based algorithms suitable for today’s mul-

ti-core processors is daunting. DOA algorithm has been implemented on Multicore (Intel Nehalem Quad Core), NVIDIA’s

GPU GeForce GTX 260, and IBM Cell Broadband Engine Processor. This is in an effort to use DOA for real time applica-

tions. The DOA algorithm has been parallelized, partitioned, mapped, and scheduled on Multi-Core, GPU, and IBM Cell BE

processor.The parallel algorithm is developed in C# for Intel Nehalem Quad Core, a combination of C and CUDA for GPU,

and C++ for IBM Cell processor. The algorithm has also been implemented on single core for comparison purposes. Wide-

band DOA algorithm is implemented assuming 16 and 4 sensors using Uniform Linear Array (ULA).

Keywords: Direction Of Arrival (DOA), Single Core, Multicore, GPU And IBM Cell BE Processor

1. Introduction

Digital processing of radar signals at a very high speed is

a necessity for military and civilian applications.Combining

radar signals with innovations in image processing to extract

more information from data or combine with other intelli-

gent databases would be the norm for military applica-

tions.Often times these systems need to be small and mobile,

but need to process more data.The latest computer system

architectures being developed by the computer industry

offers more processing power in a smaller footprint.

Parallel computing has been rejuvenated with the explo-

sion of multicore technologies such as Multicore Processors,

IBM Broadband Cell Processor, Many-Cores, Multicore

DSPs, and General Purpose Graphic Processing Units

(GPGPUs). Multicore technologies have also given a boost

to parallel programming languages. Most multicore vendors

are providing their own parallel programming language

support for their processors. Parallel programming can be

accomplished via Compiler based, Application Program-

ming Interface (API), and Model-Of-Computation ap-

proaches. Therefore there is no universal way of imple-

menting algorithms in parallel. Programmers are relying on

mostly hand crafted approaches. It is also perceived that

programming in parallel is difficult.

In order to fully exploit available parallel computation

power, the algorithm is partitioned into an optimal number

of parts and then to tasks.A task is a simple set of threads that

can be run on a core. Tasks can be stored and are scheduled

by a task scheduler onto a pool of kernel hardware

threads. Partitioning of tasks is a challenging feat and re-

quires optimization. There are opposing forces at work.too

many partitions add overhead, and too few partitions leave

processors idle, requiring optimal partitioning [1].

In most of the signal processing applications, main in-

terest is to obtain an accurate estimation of the Direc-

tion-Of-Arrival (DOA) [2][3] of a received signal. The

Multiple Signal Classification (MUSIC) algorithm [3] based

on subspace techniques is one of the most popular algo-

rithms due to its high resolution and the reduced computa-

tions compared to the Maximum Likelihood (ML) based

algorithm.The most widespread wideband method is Cohe-

rent Signal-Subspace (CSS). When the incoming signal is in

wideband then large amount of data is needed and more

complex, computationally intensive wideband processing

techniques will be required. The MUSIC algorithm for wi-

30 Mohammad Wadood Majid et al.: Parallel implementation of the wideband DOA algorithm on single core,

Multi-core, GPU and IBM cell be processor

deband Directional of Arrival (DOA) has been proposed by

Wang &Kaveh [3]. The MUSIC algorithm separates the

wide frequency band into narrowband components [3].A

focusing matrix is formed using this initial DOA esti-

mate.The data set for this algorithm is divided into 64 seg-

ments and each segment contains 64 samples [3].A uniform

linear array of sixteen elements is assumed.The wideband

MUSIC algorithm has the following computational steps.

• Compute 64 sets of 64-point FFT

• Compute 33 covariance matrices (16 by 16)

• Compute eigenvalues and eigenvectors via House-

holder transformation and QR decomposition

• Compute DOA using Power Method

• Use this DOA as an initial estimate

• Compute focus matrix

• Use this focus matrix as new covariance matrix

• Compute eigenvalues and eigenvectors via House-

holder transformation and QR decomposition

• Compute the Akaike Information Criterion (AIC) [4]

• Compute DOA using Power Method

It can be seen that the above MUSIC algorithm requires

computation of the DOA algorithm two times. The entire

MUSIC algorithm will require basic computational blocks

of Fast Fourier Transform (FFT), covariance matrix,

Householder decomposition, QR transformation, Akaike

Information Criterion (AIC) [4], and Power Method.Each

part is analyzed to explore any kind of dependencies be-

tween tasks. Each part is then parallelized.

2. Parallel Hardware

2.1. Intel Nehalem Quad Core

Homogeneous multicore stands out among a confluence

of the current hardware trends as they provide an effective

solution to manage the power and computation speed. A

computationally intensive problem needs to be divided into

discrete parts for concurrent computation. The Intel Neha-

lem Quad Core processor [5] is one of the parallel

processing platforms that can be exploited for fast compu-

tation of algorithms for real time applications. Intel Nehalem

Quad Core has four physical cores. Each physical core has

two virtual processors running in parallel. It has L1 cache,

32KB data and 32KB instruction, for each physical core, L2

cache 256KB which is shared among logical cores, and L3

cache 8MB shared between all physical cores on the chip.

2.2. NVidia GeForce GTX 260

The emergence of programmable graphic hardware has

led to increasing interest in off-loading numerically inten-

sive computation to a Graphic Processing Unit (GPU). The

combination of high-bandwidth memories and hardware that

performs floating point arithmetic at significantly higher

rates than conventional CPUs makes graphic processors

attractive targets for a highly parallel numerical workload.

NVIDIA GeForce GTX 260 [7] GPU has a multicore

architecture consisting of hundreds of cores. When paralle-

lizing any algorithm, it should be decomposed into various

parts, and each part is further broken down into tasks. Each

task is executed on a different core of the GPU, and each

task contains threads which are executed simultaneously.

Each core has eight stream processors (SP). Each core runs

in a Single Instruction Multiple Data (SIMD) manner in

each clock cycle, all stream processors of a core execute the

same instruction but operate on different data.

2.3. IBM Cell Broadband Engine Processor

The Cell BE is unique from traditional multi-core chips in

that the nine cores that comprise the Cell BE aren’t all

functionally the same. One core, the Power Processing

Element (PPE), is the master and runs typical PowerPC code.

The other eight cores, the Synergistic Processing Elements

(SPEs), can perform mathematical computation in parallel

[9].

Each SPE unit has its own 256KB of memory that is

loaded or stored from/to main memory via a Direct Memory

Access (DMA) request to the Memory Transfer Engine

(MTE). Once the local SPE memory transfer is complete,

then the SPE is free to use local memory for calculations

without any data or timing conflicts with other SPE units.

The Cell BE provides novel methods for parallelism. Each

SPE uses Single Instruction Multiple Data (SIMD) vector

registers to operate on multiple operands during one in-

struction. Operands may be 8, 16, 32, 64, or 128 bits wide

depending on the computation needed. With 128 vector

registers, each 128 bits wide, four 32-bit operands are

available to perform four calculations simultaneously. The

Cell BE includes DMA scheduling in hardware using prior-

ity levels and sequencing flags for automated queue man-

agement [9]. This allows the PPE to tell each SPE which of

the eight DMA channels to use for its data transfers. All of

the mathematic functions use packed vector registers whe-

reby four simultaneous calculations are performed in one

function call. The mailbox signaling technique will be used

for communication between all six available SPE cores and

the PPE core during execution of this algorithm. Computa-

tions in all six cores will be in parallel and in a pipeline

fashion.

3. Parallel Implementation

3.1. Implementation on IBM Cell BE Processor

A Cooley-Turkey based FFT is used to convert the sensor

array data from the time domain to the frequency domain

[11]. Due to symmetry, only half of the resulting frequency

bins are required as covariance input. For example, a

64-point FFT will result in 33 unique frequency bins. The

FFT operation has been located inside the covariance mod-

ule to maximize performance by eliminating unnecessary

DMA transfers. An efficient bit reversal routine was used to

perform the decimation-in-time swaps required. Vector

registers are packed with data from the same row and col-

umn from four frequency bin matrices before being used by

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(2): 29-37 31

the covariance routine. This is slightly different than the

narrowband covariance module in that four covariance ma-

trices are produced simultaneously instead of only one. To

efficiently utilize the vector registers in the SPE units, the

center frequency band is not used. For a 64-point FFT, this

results in 32 frequency bins that map nicely to the four va-

lued vector register format. So to compute the covariance for

32 frequency bins requires only eight separate matrix mul-

tiplications.

The MUSIC algorithm embedded in the wideband DOA

algorithms [2][3] utilizes the fact that the signal vectors are

orthogonal to the noise subspace. To generate the noise

subspace, the covariance of the FFT data vectors of samples

obtained from the linear antenna array is computed. The

covariance matrix is computed as A’*A, where A is the FFT

data vector samples and A’ is the complex conjugate of A.

The matrix A is in the complex domain so each element

multiplication consists of �� � ��� � �	 �
�� � ��	 �
�
� � ��
 � �	��.

The covariance matrix is computed by taking each row

and multiplying it with each of the other rows’ complex

conjugates, itself included as shown in Fig. 1. Each element

of the row is duplicated into all four locations of a vector

register. Multiplication is then performed on all four values

simultaneously for four consecutive rows of the matrix. The

multiplication result is then accumulated for each element of

the matrix. This achieves the A’*A computation that results

in the covariance matrix [2][3].

Figure 1. Covariance calculation of real part for the first four matrix

elements of A. The imaginary part is similar except instead of RRII, the

order is RIIR and subtractions are performed instead of additions.

The limitation of the SPE only being able to use local

memory for calculation is handled by using mailboxes to

issue memory pointers that point to the data to be acted upon.

For example, the PPE sends in the mailbox slot for the co-

variance module, the memory pointer to the array sensor

data and also the memory pointer of where to put the re-

sulting covariance matrix. Subsequently, the covariance

module returns a message back to the PPE indicating when

the covariance computation is complete.

Using the square covariance matrix, eigenva-

lue-eigenvector decomposition is performed and the result-

ing eigenvalue-eigenvector pairs are sorted in descending

order according to the eigenvalues. The eigenva-

lue-eigenvector decomposition is performed by taking the

covariance matrix and mapping it to the real domain. If C =

A + Bi, where C is the covariance matrix, then R = [A –B; B

A], where A and B are matrices consisting only of the real

and imaginary parts respectively. The resulting matrix R is

both real and symmetric.

The real only symmetric covariance matrix is twice the

width and height of the complex matrix it represents, how-

ever the complexity of the eigenvalue-eigenvector decom-

position computation is significantly reduced. In addition,

the eigenvalue-eigenvector decomposition method only uses

the lower triangle given to it, therefore the –B values can be

skipped and a simple duplication of the A values is all that is

required. This rearrangement is performed inside the ei-

genvalue-eigenvector decomposition module to prevent the

duplicated A values from being transferred from system

memory twice.

To maximize the performance, all available cores need to

be utilized at near 100%. In addition, the overall bandwidth

achieved hinges on how many sensor array samples can be

included in the covariance computation in a given amount of

time. Therefore, as shown in Fig. 1, four SPE units were

selected to perform covariance computations simultaneously,

each on a separate block of sensor array data separated by

time. The resulting four sets of 32 covariance matrices are

then passed to the next cores for further processing.

The covariance matrix R is first reduced to tri-diagonal

form using Householder transformations. The Householder

transformation process is deterministic in nature and lends

itself well to parallelization by vector register use. The next

step is to reduce the tri-diagonal form to diagonal form

using a combination of QL decomposition with implicit

shifts and Givens rotations to maintain tri-diagonal form.

The QL algorithm is not deterministic, so computation is

terminated when convergence occurs within the limits of

real number machine precision. Once the limit is reached,

the resulting matrix is diagonal and represents the eigen-

vectors for matrix R.

Considerable effort was put forth into a parallel form of

QL, however, the overhead complexity of tracking where in

each matrix the Givens rotation should be performed, un-

dermined the performance gain and introduced possible

errors into the computation.In general, the diagonal de-

composition converged in six iterations or less with the

majority of iterations occurring in the upper half of the ma-

trix.The lower half typically converged in one or two itera-

tions.The convergence criteria was deemed true if the di-

agonal was within one epsilon unit of machine precision for

single precision floating-point number representation. The

result of the diagonal decomposition is a vector of eigen-

values with their respective normalized eigenvectors stored

in matrix form. The eigenvalue-eigenvector decomposition

is performed in the module labeled as EIG of Fig. 2.

Figure 2. Mapping of SPE modules.

Coherent Bus

 COV COV EIG

 COV COV MUS

PPE

 MTE

32 Mohammad Wadood Majid et al.: Parallel implementation of the wideband DOA algorithm on single core,

Multi-core, GPU and IBM cell be processor

The last step of the eigenvalue-eigenvector decomposi-

tion is to sort the eigenvalues in descending order while

keeping track of their respective eigenvectors. The eigen-

vector matrix is split into signal subspace and noise sub-

space using Akaike Information Criterion (AIC) [4]. The

AIC criterion is used to determine the number of detected

sources and separate the signal and noise spaces such that

the number of signal eigenvectors matches the number of

sources detected. The remaining noise space is then used as

a guideline to detect the power peaks representing the de-

tected signals and their respective angle of arrival. The

number of signal sources is reported back to the PPE using

the mailbox system. In addition, only the eigenvectors are

returned by the eigenvalue-eigenvector decomposition

module since the eigenvalues have served their purpose and

are no longer needed.

The SPE unit labeled as MUS in Fig. 3 performs the

computation of peaks using the power method, and lends

itself well to parallelization. The power method is per-

formed on the noise subspace eigenvectors for separate

observations of the signals. The power is calculated as ob-

served for each degree from 0 to 89 and returned back to

shared system memory. The angles with the largest power

peaks are the DOA of the incoming signals. It can be seen

that all available cores of the Cell BE are all performing in

parallel.

Figure 3. Load and computer from cache with Row-Major technique.

This initial DOA estimate, along with the remaining fre-

quency bin covariance matrices, is put through a focusing

transformation inside the 5b EIG module followed by ei-

genvalue-eigenvector decomposition. These eigenvalues

and eigenvectors are again used in an AIC algorithm to

estimate the number of sources. The number of detected

sources is used to get the noise subspace. The power is

calculated in 6b MUS as observed for each degree from 0

to 89 and returned back to shared system memory. The an-

gles with the largest power peaks are the final DOA of the

incoming signals.

3.2. Mapping Scheduling of DOA on Intel Quad Core and

GPU

The wideband MUSIC algorithm can be divided into

main computational blocks, namely computation of Fast

Fourier Transform (FFT), covariance matrix, Householder

Transformation, QR Decomposition, and Power Method.

These individual blocks need to be partitioned, mapped,

and scheduled on a Multi-Core/GPU so they can execute

the entire algorithm efficiently.

The performance of parallel MUSIC algorithm is inti-

mately related to the memory layout of the data. On mod-

ern shared-memory multiprocessors with multi-level mem-

ory hierarchies, sometime the column-major layout can

produce unfavorable access patterns resulting in increased

memory system overheads. These effects result in perfor-

mance anomalies as signal size is varied.The traditional

parallelization has restriction on the input data and required

transform parameters. An Adaptive Load Balancing Algo-

rithm is proposed for efficient implementation of MUIS

with any size of signal on multi-core system.

3.2.1. Adaptive Load Balancing Algorithm (ALBA)

A task is a set of threads that executes on each core in

parallel. In order to minimize the cache misses at each level

of MUSIC, an optimal task size is very important. The

Adaptive Load Balancing Algorithm (ALBA) creates dif-

ferent number of tasks at different number of task to bal-

ance the load. The execution of ALBA algorithm involves

following three computational steps.

3.2.1.1. Row Major

The cache hit performance is improved by the concept of

row-major organization [9]. The element of the signal is

accessed column wise, and therefore is not in sequential

order in memory. This is due to the fact that signal is stored

in memory as row-major order. As a result, the MUSIC

algorithm is bandwidth limited and displays poor perfor-

mance and low efficiency because of time spent in loading

data rather than computing when performing computation.

In order to optimize the performance of columns wise the

signal is transposed and then the computation is performed

on each row instead of columns wise as shown in Fig. 3.

3.2.1.2. Data Level Parallelism

MUSIC algorithm is modified for execution on multicore,

especially when dealing with the cache-memory. With data

level parallelism, the goal is to maximize the utilization of

cache memory for each core. It is of great importance to

use memory resources efficiently, as it is apparent that the

maximum performance obtainable from current multicores

is mostly limited by the memory access.

A review of the profiler indicated that if installed RAM

in a computer system is between 2GB to 4GB then 40% of

L1 cache is consumed by the Operating System (OS) of

each core.

To find the maximum number of data points that the L1

cache may hold can be calculated as.

��� ��� � ����� �����.��
� (1)

Where

• C��is the total L1 cache (32KB)

• C�� � 0.4is cache used by operating system

Transpose

Load and Compute data from cache memory

Load and Compute data from cache memory

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(2): 29-37 33

• D is number of bytes of each data point

• Max (C) is maximum data points to be stored into

available L1 cache.

Therefore the maximum data points which can be stored

in L1 cache would be Max (C) samples. In this way, each

sub problem should not be more than Max (C) samples to

get the maximum performance of L1 cache of each core.

Eqn.2 and 3 are used to calculate the total number of bytes

for Max (C) data points and total number of tasks to ex-

ecute each task independently on each core.

Mem� Bytes� � D � �L � 1� (2)

Where

• D is number of bytes of each data point

• L is the total number ofdata points

• Mem is the total bytes for all data points

• 1 is considered as an extra element as OS required

four bytesforcreation of an instance of an object

'(�)�*�
+,) ��� (3)

Where L-is total number of tasks

If the number of samples is less than or equal toMax (C),

then entire signal is considered as single task. Otherwise

the signal is divided into n sub-signals, and then each

sub-signal is considering as a task as shown in the follow-

ing pseudo code. In this work, it has been found that most

of the time, the data is greater than Max (C) samples.

Creating Tasks Pseudo Code

1. Input signal x(n)

2. Data store into array

3. ��� ��� � ���������.�
�

4. �./� 012.3� � 4 � �' � 1�

5. '(�)�*�
+,) ���

6. 67'(8 ������
then ;�3< � 1

else

i. � �)�*�
+,) ���

ii. 1 � � � >?@A
���
iii. �71 8 0.5

iv. A � >?@A
���
.D3.

v. A � �

1. 7?> 1 2?A
2. ;�3<E � � Where i=1,2…..n

3. ;�3<*F� � G�A – �� � >?@A
���G
3.2.1.3. Thread/Operation Level Parallelism

Thread level parallelism is a form of parallelization that

is used across multiple cores. The processor used in this

study has four physical cores and each physical core has

two virtual processors running in parallel. Tasks are as-

signed to the physical cores and threads are assigned to the

virtual processors as shown in Fig 3.

The process of thread level Parallelism is described as

follows.

• Data points are converted into A tasks, depending

upon available L1 cache.

• Tasks are assigned to each physical core. Each task

contains multiple threads.

• Threads are assigned to virtual cores as each physi-

cal core contains two virtual cores.

3.2.2. Parallel FFT

Starting with the initial parallel implementation of the

FFT [12][13], followed by analyzing the problem, a se-

quence of optimization techniques are used to improve the

performance of the initial parallel implementation. In initial

implementation, sample data is divided into different tasks,

tasks are created on based of ALBA. Each task contains 64

data points. These tasks are sent to global memory of GPU

and global queue of multi-core then to share memory, be-

cause all SPs of GPU and all cores of multi-core share the

data from shared memory and the data can be used among

multiple threads across the task for GPU. Each task is di-

vided into subtasks. Each subtask computes a butterfly op-

eration which includes reading of 2-point data, twiddle fac-

tor from the pre-computed array, performs butterfly opera-

tions on them and writes back to the cache (L1) for multi-

core, shared memory for GPU, and synchronized.

By using 2-point subtask, a 64-point FFT computation

can be completed with 32 subtasks. If four data points are

taken at a time instead of taking two points at a time, then

two butterfly operations can be computed independently.

The thread can then read all data from cache of multicore

or from shared memory of GPU and write back the results.

This reduces the total number of memory access operations.

Consideration of four data points at a time will require

synchronization after two butterfly operations. This will

eliminate half of the synchronization operations. Decreas-

ing the number of synchronizations and memory operations

can potentially improve the performance. Since the system

can handle computations of up to eight data points at a time

due to cache limitations, then this will result in 100% im-

provement in the computation time.

In a 64-point FFT (32 butterfly operations), 32 twiddle

factors are used in the first stage, half of those twiddle fac-

tors used in the second stage are the same as the values

used in first stage, and so on. Twiddle factors are stored in

cache thus reducing unnecessary memory accesses. This

will provide further improvement of 10.2%.

3.2.3. Parallel Covariance Matrix

The initial implementation of covariance matrix is ac-

complished via blocking and row-major techniques [14].

Consider an example of a 4x4 matrix, in initial implementa-

tion for blocking; four sub-matrices (blocks) are created.

The number of columns in the matrix corresponds to the

number of sensors, in case of four sub-matrices; the number

of sensors is divided into two parts, which have to combine

back when synchronizing the tasks, which is an expensive

operation.

To optimize the performance, two sub-matrices of 2x4 are

34 Mohammad Wadood Majid et al.: Parallel implementation of the wideband DOA algorithm on single core,

Multi-core, GPU and IBM cell be processor

created, which have reduced 50% synchronization overhead

and do not have to combine the sensors back at the time of

synchronizing the tasks. This improved the performance by

50% from initial implementation. Each sub-matrix is a task.

These tasks are sent to global queue of multicore and global

memory of GPU.

3.2.4. Parallel Householder Transformation

Householder transformation and QR decompositions are

used to compute eigenvalues and eigenvectors of the noise

subspace [4]. Householder transformation is an efficient and

popular technique to transform covariance matrix into a

tri-diagonal matrix. The QR decomposition method uses

tri-diagonal matrix and produces eigenvalues and eigenvec-

tors.

Householder transformations are partitioned into seven

steps to calculate the tri-diagonal matrix as shown in Table

1. Partitioning this part of the algorithm consists of a com-

bination of steps requiring sequential processing (Steps 1-3)

and parallel processing steps (Steps 4-7). The steps 4-7 are

matrix multiplication as shown in Table 1. These steps can

be performed similar to the method used in the covariance

matrix section.

Table 1. Householder Transformation.

1. S= Sign [Xk] I∑ KXMNOPMQR��

Sequential

Processing2. R = S2 S�S � xO�

3. W =
�
W X0, … … . ,0, S � xO, x[… … . xP\

4. V = A * Transpose(W)

Parallel

Processing
5. C = W * V

6. Q = V – (Transpose(W) * C)

7. Values = A -2.0*(Q*W) – Transpose(2.0-(Q*W))

3.2.5. Parallel QR Decomposition

For a symmetric tri-diagonal matrix, the QR decomposi-

tion is an efficient way to obtain the eigenvalues. The algo-

rithm is based on the fact that such a matrix can be factored

into Q and R, where Q is an orthogonal transformation and

R is an upper right triangular matrix. QR decomposition is

partitioned into six steps for calculation of the QR matrices.

Partitioning of QR algorithm consists of a combination of

steps requiring sequential (due to data dependencies) and

parallel processing. A parallelized QR decomposition algo-

rithm is shown in Table 2. It can be seen from Table 2 that

steps one through three are sequential. Steps four to six are

executed in parallel in similar fashion as explained in paral-

lel covariance matrix part.

Table 2. QR Decomposition.

1.S= Sign [Xk] I∑ �]̂ �O*̂Q_

Sequential

Processing
2.R = S2 `O � 2`��_�

3.W =
�
W a0, … … . ,0, bcFdefP�bc�g

g � bch�
g , … … . bi

g j

4.H1 = 1-2W* Transpose(W)

Parallel

Processing
5.Q = H1 * H2......Hn

6.R = (Hn * Hn-1......H1) * A

Parallel AIC and Power Method

The Akaike Information Criterion (AIC) [4] is used to

determine the model order. It helps us in separating the

signal and noise subspaces. AIC is divided into (number of

sensors -1) tasks, subtasks, and threads and they have been

mapped onto both the Multicore and GPU.

Finally the Power Method starts with an arbitrary vector,

which may be an approximation to the dominant eigenvec-

tor. QR decomposition produces distinct eigenvalues λ1, λ2,

λ3… λn and they are sorted in descending order. An eigen-

vector V1 corresponding to λ1 is a dominant eigenvector.

Power Method is divided into two steps and both steps can

be executed in parallel. Each step contains multiple tasks,

subtasks, and threads, and they have been mapped onto

both the Multicore and GPU.

4. Simulation

In order to demonstrate the parallel implementation of

the DOA algorithm for wideband signals, a uniform linear

array of sixteen equally spaced Omni-directional sensors

was used. Two wideband sources atk� and kO were as-

sumed. The signals are stationary zero mean band pass

white Gaussian processes. Simulation data is similar to the

method described by Wang &Kaveh [3]. The ease of signal

detection using wideband DOA on a sixteen element sensor

array is clear in Fig. 5. Four different FFT point sizes were

tested and compared. The 64-point and 32-point FFTs show

approximately the same results. Even the 16-point FFT

gives adequate signal DOA detection, however the 8-point

FFT starts to show extra peaks that could be misconstrued

as valid signal sources. Computation times for the building

blocks of covariance matrix, Householder transformation,

QR decomposition, AIC, and Power Method are shown in

Table 3. These computational blocks have been parallelized

and mapped on Multicore and GPU. The parallelized wi-

deband CSS algorithm has been implemented on Multicore

and GPU. It has also been simulated on single core for

comparison purposes. Simulation results of wideband CSS

based DOA MUSIC algorithm with sixteen sensors and two

sources at 20o and 50o are plotted in Fig. 4.

 Science Journal of Circuits, Systems and Signal Processing 2013, 2(2): 29-37 35

Figure 5. Pipeline stages of wideband DOA. The focusing is performed

inside the 5b EIG after getting the initial DOA estimate from 6a MUS.

Figure 4. Thread level Parallelism.

Table 3 shows the computation time achieved using var-

ious approaches to the covariance module. The covariance

computation time determines the number of possible sensor

array samples processed over a given time and therefore the

overall bandwidth achievable by the DOA algorithms. A

simple covariance calculation using single-threaded code

running on the PPE can only provide a bandwidth of 11

KHz. Even though the Cell BE runs at 3.2 GHz, the result-

ing bandwidth is very narrow. Parallel narrowband MUSIC

when configured to utilize all six available cores has a res-

pectable bandwidth of approximate 500 KHz. Parallel nar-

rowband MUSIC with an unrolled inner loop can improve

bandwidth by 50 KHz. This is done simply by unrolling the

inner covariance multiplication loop, thereby leveraging

many of the 128 vector registers available in the SPE unit.

Parallel wideband DOA using various FFT transform

lengths were computed and their bandwidth data is also

given in Table 3. The 16-point FFT size demonstrates a

good compromise between DOA resolution and bandwidth

performance. It can be seen from Table 3.

Table 3.Computation Time of MUIC.

 Single , Quad Core and GPU IBM Cell Processor

 Single core Nehalem Quad Core GPU Single Thread Multi-Thread

FFT 1.283 0.589 0.394

102.208 5.783

Covariance 0.508 0.144 0.135

Householder 0.273 0.122 0.119
12.791 6.294

QR 0.230 0.118 0.113

AIC 0.180 0.080 0.075
1.724 4.005

Power Method 0.150 0.068 0.066

Total 2.624 1.121 0.902 116.723 16.082

% Improved 3.13 3.74 7.25

5. Conclusion

Computation of Direction of Arrival (DOA) via MUSIC

algorithm has been parallelized and implemented on Intel

Nehalem Quad Core, NVidia’s GeForce GTX 260 GPU,

and IBM Cell BE Processor. It concludes that computation

of this algorithm is faster with NVidia’s GPU as compared

to Intel Nehalem Quad Core and IBM Cell BE Processor. It

was also determined that computation of an algorithm with

large data sizes will perform better than one with smaller

data sizes. This is due to the balance between communica-

tion overhead and computation time. A large number of

tasks with smaller data sizes will have a long computation

time as compared to a small number of tasks with large

data sizes, because too many tasks add overhead and too

few tasks leave processors idle. Therefore, there needs to

be a balance between data size and the number of tasks.

Figure 6. Wideband DOA of two incoming sources from 20 and 50 degrees

using 4096 sensor array samples of a sixteen element array with four

different FFT sizes.

References

36 Mohammad Wadood Majid et al.: Parallel implementation of the wideband DOA algorithm on single core,

Multi-core, GPU and IBM cell be processor

[1] Joohn L. Hennessy, David A. Patterson “Computer Archi-
tecture a Quantitative Approach” Morgan Kaufman Pub-
lishers 2008.

[2] R. O. Schmidt, “Multiple emitter location and signal para-
meter estimation” IEEE Transactions on Antennas and
Propagation, vol. AP-34, No. 3, pp. 276-280, March 1986.J.
Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd
ed., vol. 2. Oxford. Clarendon, 1892, pp.68–73.

[3] H. Wang, M. Kaveh, ”Coherent Signal-Subspace Processing
for the Detection and Estimation of Angles of Arrival of
Multiple Wideband Sources,” IEEE Transactions on Acous-
tic, Speech and Signal Processing, Vol –ASSP-33, No. 4,
August 1985, pp 823-831.

[4] Akaike, H. ,”A New Look at the Statistical Model Identifi-
cation,”IEEE Transactions Automatic Control, Vol. AC-19,
pp. 716-723, December 1974.

[5] Intel Corporation.Intel Nehalem

http.//www.intel.com/technology/architecture-silicon/next-g
en

[6] Nvidia Corporation Geforce GTX 260

http.//www.nvidia.com/object/product_geforce_gtx_260_us.
html

[7] IBM, Software development kit for multi-core acceleration
version 3.1. Programmer’s guide, Retrieved from

http.//publib.boulder.ibm.com/infocenter/systems/topic/eicct
/prg

[8] J. Bartlett, Programming high-performance applications on
the Cell BE processor, Retrieved from
http.//www-128.ibm.com/developerworks/power/library,
2007.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical recipes. The art of scientific computing,
3rd ed., Hong Kong. Golden Cup, 2007.

[10] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko. “High
Performance Discrete Fourier Transforms on Graphics Pro-
cessors”, Microsoft Corporation.

[11] William J. Pilaud. “Improved FFTW Benchmark to Measure
Multi-Core Processor Performance”, Curtis Wright Controls
Embedded Computing.

[12] M. S. Lam, E. E. Rothberg, and M. E. Wolf. “The cache
performance and optimizations of blocked algorithms”. In
Proceedings of the 4th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 63.74, April 1991.

