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Abstract: This paper proposes a three-dimensional (3D) integer wavelet transform with reduced amount of rounding noise. 

Non-separable multi-dimensional lifting structures are introduced to decrease the total number of lifting steps. Since the lifting 

step contains a rounding operation, variance of the rounding noise generated due to the rounding operation inside the transform is 

reduced. This paper also investigates performance of the transform from various aspects such as 1) variance of the noise in 

frequency domain and those in pixel domain, 2) the rate distortion curve in lossy coding mode and the entropy rate in lossless 

coding mode, 3) computational time of the transforms, and 4) feature comparison with other methods. The proposed wavelet 

transform has a merit that its output signal, apart from the rounding noise, is exactly the same as the conventional separable 

structure which is a cascade of 1D structure. Due to this compatibility, it becomes possible to utilize legacy of previously designed 

1D wavelet transforms with preferable properties such as the regularity. Furthermore, total amount of the rounding noise which is 

generated due to integer expression of signal values inside the transform is significantly reduced. This is because the total number 

of rounding operations is decreased by introducing the non-separable multi-dimensional lifting structure which includes 

multi-dimensional memory accessing. It contributes to increase coding performance of a system based on the 3D wavelet 

transform. As a result of experiments, it was observed that the proposed method increases performance of data compression of 

various 3D input signals. 
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1. Introduction 

Over the past few decades, quality of image signals have 

been dramatically increased in respect of pixel resolution, 

frame rate and dynamic range of pixel values. The more the 

quality increases, the more data volume becomes. Therefore 

image compression techniques based on a transform have been 

playing an important role for storage and communications of 

digital media data.  

For still images, a two-dimensional (2D) transform such as 

the discrete cosine transform (DCT) and the wavelet transform 

has been utilized. Recently, various types of three-dimensional 

(3D) transforms have been investigated for video, hyper 

spectral images, integral images and medical volumetric data 

[1-4]. This paper deals with a ‘3D’ wavelet transform with 

reduced amount of rounding noise inside the transform for 

high performance ‘lossless’ data compression. 

So far, a class of ‘separable’2D wavelet transform has been 

widely developed for various applications. The JPEG 2000 

international standard also adopts this class of transform [5, 6]. 

It has been applied for digital cinema [7, 8]. Since its transfer 

function is composed of a product of the horizontal 1D transfer 

function and the vertical one, it can inherit legacy of 

previously designed 1D structure suitable for hardware 

implementations [9-11]. It can also have the regularity and low 

sensitivity to various noises [12, 13]. However, most of them 

are designed for ‘lossy’ coding of images for practically 

reasonable data compression rate. 
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For ‘lossless’ coding of images, it is necessary to have 

transformed values as integers for entropy coding, and also 

inversely transform them to reconstruct the original integer 

pixel values without any loss. It has been implemented in the 

lifting structure with rounding operations as the integer 

wavelet transform and extended based on the international 

standard [14, 15]. The radar network has also been utilized for 

the reversible color transform and the integer DCT [16-22]. 

Those are indeed ‘lossless’. A set of forward and backward 

transform guarantees lossless reconstruction of the original 

integer pixel values. However, there exist ‘rounding noise’ 

just after the forward transform. To reduce those noise due to 

the rounding operations applied at each of the lifting steps, a 

‘non-separable’ structure was introduced to decrease the total 

number of lifting steps as well as the rounding operations [23]. 

Most of the non-separable structures have been initially 

introduced to increase precision of the prediction by adapting 

to local context of neighboring pixels [24-26]. More general 

designing problem based on a sparse criteria has been 

investigated [27]. Recently, directionality has been utilized in 

a generalized poly-phase representation [28, 29]. Those have 

been focusing on designing adaptive high pass filters of the 

wavelet transform. 

A new class of non-separable 2D structure has been 

reported in [30-33]. Its transfer function can be expressed as a 

product of 1D function. In this sense, the transform based on 

this structure is ‘compatible’ to the separable transform. 

However, in its implementation, it is not a cascade of 1D 

signal processing in the 1D structure. It requires 

multi-dimensional memory accessing. In addition, those are 

not adaptive to local context of pixels. Even though it has some 

drawbacks yet, it has advantage that it decreases the total 

number of lifting steps as well as the rounding operations. 

Unlike those previous studies on the 2D case, this paper 

proposes a ‘3D’ integer wavelet transform for ‘lossless’ 

coding of 3D signals with reduced amount of the rounding 

noise. In a conference paper [34], a non-separable 3D lifting 

structure was introduced to decrease the total number of lifting 

steps. However its computational complexity becomes huge 

since it requires 3D memory accessing. In case of video signal 

processing, it requires inter-frame memory accessing. 

Therefore it costs huge memory space. Therefore this paper 

newly introduces non-separable 2D structures to construct the 

3D integer wavelet transform. 

In addition, investigation in [34] on performance of the 3D 

integer wavelet transform was limited to noise variance in 

frequency domain only. Its input signal was also limited to 

only one MRI data set. Therefore this paper clarifies not only 1) 

variance of the noise in frequency domain and those in pixel 

domain, but also 2) the rate distortion curve in lossy coding 

mode and the entropy rate in lossless coding mode, 3) 

computational time of the transforms, and 4) feature 

comparison with other methods. In addition to the MRI data 

set, various kinds of input data are tested in this paper. 

The proposed wavelet transform has a merit that its output 

signals, apart from the rounding noise, are exactly the same as 

a conventional transform whose transfer function is expressed 

as a product of 1D transfer functions. Due to this compatibility, 

it becomes possible to utilize legacy of previously designed 

1D wavelet transforms. Furthermore, total amount of the 

rounding noise is significantly reduced. It contributes to 

increase coding performance of data compression system 

based on the 3D wavelet transform. 

This paper is organized as follows. The reason why the 

non-separable structure reduces the lifting steps is explained in 

2. Discussion is extended to 3D case in 3. Non-separable 2D 

structures for the 3D wavelet transform is newly introduced in 

4. The non-separable multi-dimensional structures are 

compared in various aspects for various input signals in 5. This 

paper is concluded in 6. 

2. Wavelet Transform and Lifting 

Structure 

It is explained how the rounding noise is reduced 

introducing a non-separable 2D structure. 

2.1. One-Dimensional (1D) Wavelet Transform 

Fig.1 illustrates a one-dimensional (1D) integer wavelet 

transform for lossless coding of discrete 1D signal. In 

encoding side, the input signal X is fed into the forward 

transform which outputs low frequency band signal YL and 

high frequency band signal YH. Each of them are coded with an 

entropy encoder to generate a bit stream for storage and 

communications. In decoding side, the band signals are 

decoded and inversely transformed.  

 

Figure 1. One-dimensional (1D) integer wavelet transform. 

This system is referred to as the ‘integer’ wavelet transform 

for ‘lossless’ coding since it reconstructs the original signal X 

without any loss. This is because all the signal values inside 

the transform are rounded to integers, and the rounding noise 

generated by the rounding operation is canceled at the output 

of the backward transform. 

In detail, the original signal X given in integer values with 

length Nis split into two half-length sequences X0 and X1 as 
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and M=N/2. In the 1st lifting step, X1 is predicted from X0 as  

)]([)()( 011 mxVRmxmyH ∗+=           (3) 

where R[x] denotes an integer rounded from the original value 

x, and V1 ∗  denotes convolution. The convolution is defined 

as  

( ))1()()( 00101 ++=∗ mxmxhmxV          (4) 

where h1 is a filter coefficient. In the 2nd lifting step, X0 is 

updated from YH as  

)]([)()( 20 myVRmxmy HL ∗+=         (5) 

where the convolution V2 ∗ is defined as 

( ))1()()( 22 −+=∗ mymyhmyV HHH       (6) 

where h2 is a filter coefficient. As the rounding operations R[ ⋅ ] 

are applied, all the signal values are expressed as integers 

inside this integer wavelet transform. 

In the lifting wavelet transforms, filter coefficients have 

been carefully determined in previous reports. For example, a 

set (h1, h2) = (-1/2,1/4) is utilized in JPEG 2000 international 

standard [5,6]. In this case, a low pass filter of the forward 

transform has unity gain for a constant signal, and zero gain for 

an alternating signal. Those properties are expressed as  

( )0 2( ) ( ) ( ) ( 1)

constant ( ) constant

0 ( ) ( 1)

L H H

n

y m x m h y m y m

for x n

for x n

= + + −

=
=  = −

      (7) 

and a high pass filter has 
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It is desirable to utilize good properties like (7) and (8), and 

other properties such as the vanishing moment in designing a 

multi-dimensional transform. 

2.2. Two-Dimensional (2D) Wavelet Transform 

 

Figure 2. Two-dimensional (2D) integer wavelet transform. 

Fig.2 illustrates a two-dimensional (2D) integer wavelet 

transform. In this transform, the 1D transform is applied 

vertically to the 2D input image X. Next, the same 1D 

transform is applied horizontally. As a result, 4 frequency band 

signals YLL, YLH, YHL and YHH are generated. Since this 

transform is a product of 1D transforms, it is referred to as the 

‘separable’ transform. 

Fig. 3 illustrates another expression of Fig. 2. It outputs the 

same band signals to those in Fig. 2. It splits the 2D input 

signal x (n1,n2) into 4 groups as  

 

Figure 3. Separable 2D structure for 2D wavelet transform. 
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where m1=0,1,…,M1-1and m2=0,1,…,M2-1 for M1=N1/2 and 

M2=N2/2. In the 1st lifting step, X10 and X11 are predicted from 

X00 and X01 respectively as 
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This convolution is performed vertically along with the 

variable m1. Similarly, in the 2nd lifting step, X00 and X01 are 

updated from X10 and X11 respectively as  
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In the 3rd and 4th lifting steps, the process is repeated 
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horizontally along with the variable m2. For example, the 

horizontal convolutions are given as 
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Note that this ‘separable’ 2D lifting structure has 8 rounding 

operations in total since each of 8 lifting step has one rounding 

operation. Those are source of the rounding noise to be 

reduced by introducing a non-separable structure in this paper. 

2.3. Non-separable 2D Structure 

Fig. 4 illustrates a ‘non-separable’ 2D lifting structure. 

Different from the separable stricture, it has multi-input 

single-output lifting steps. In addition, it has less lifting steps 

comparing to the separable one. Therefore it has less rounding 

operations as well as rounding noise. Comparing to Fig.3, the 

total number of lifting steps is reduced from 4 to 3 (75 %), and 

the total number of rounding operations is reduced from 8 to 4 

(50 %) in Fig.4. It also reduces the total amount of rounding 

noise [33]. Note that this transform has the properties of the 1D 

structure in (7) and (8) since its transfer function is the same as 

that of the ‘separable’ transform in 2.2.  

 

Figure 4. Non-separable 2D structure for 2D wavelet transform. 
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for (m)=(m1, m2). In this prediction, a diagonal prediction  
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is utilized. In the 2nd lifting step, two predictions  
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are applied. Note that these two steps can be done 

simultaneously with a parallel processor sine it is not 

necessary to wait for calculation results each other. Finally, the 

3rd lifting step completes the transform as  
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As a result, this non-separable structure outputs the same 

band signals as the separable 2D transform apart from the 

rounding noise. It is referred to as ‘compatibility’. In the next 

section, this theory is extended to 3D case. 

3. Three-Dimensional (3D) Wavelet 

Transform 

A ‘non-separable’ 3D structure is summarized after 

describing the ‘separable’ 3D structure. 

3.1. Separable 3D Structure 

Fig. 5 illustrates a ‘separable’3D lifting structure. A 3D 

input signal X is split into 8 groups and single-input 

single-output lifting steps are applied to generate 8 frequency 

band signals. This structure has 6 lifting steps and 24 rounding 

operations. We are going to reduce these numbers in this paper.  

In detail, the 3D input signal x(n1,n2,n3) is split into 8 groups 

as 

000 1 2 3

001 1 2 3

010 1 2 3

011 1 2 3

100 1 2 3

101 1 2 3

110 1 2 3

111 1 2 3

( ) (2 , 2 , 2 )

( ) (2 , 2 , 2 1)

( ) (2 , 2 1, 2 )

( ) (2 , 2 1, 2 1)

( ) (2 1, 2 , 2 )

( ) (2 1, 2 , 2 1)

( ) (2 1, 2 1, 2 )

( ) (2 1, 2 1, 2 1)

x x m m m

x x m m m

x x m m m

x x m m m

x x m m m

x x m m m

x x m m m

x x m m m

=
= +
= +
= + +
= +
= + +
= + +
= + + +

m

m

m

m

m

m

m

m















   (20) 

for (m)=(m1,m2,m3).In the 1st lifting step, the vertical 

prediction is applied as  





















∗
∗
∗
∗

+





















=





















)]([

)]([

)]([

)]([

)(

)(

)(

)(

)(

)(

)(

)(

0111

0101

0011

0001

111

110

101

100

)1(
111

)1(
110

)1(
101

)1(
100

m

m

m

m

m

m

m

m

m

m

m

m

xVR

xVR

xVR

xVR

x

x

x

x

x

x

x

x

   (21) 

where‘V1 ∗ ’ denotes the vertical convolution along with the 

variable m1 similar to (11). After the updating  
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in the 2nd lifting step, the horizontal prediction  
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is applied where ‘H1 ∗ ’ and ‘H2 ∗ ’ denote the horizontal 

convolution along with the variable m2 similar to (14). In the 

5th and 6th lifting steps, the convolution ‘D1 ∗ ’ and ‘D2 ∗ ’ are 

performed along with the variable m3.  

 

 

Figure 5. Separable 3D structure ‘Sep3D’ for 3D wavelet transform. 

In this separable structure, the Nth lifting step must wait for 

calculation results of its previous N-1th lifting step. It 

increases delay from the input to the output. These lifting steps 

are reduced introducing non-separable structures composed of 

multi-dimensional memory accessing in the next subsection. 

3.2. Non-separable 3D Structure 

 

Figure 6. Non-separable 3D structure ‘Ns3D’ for 3D wavelet transform. 

Fig. 6 illustrates the ‘non-separable’3D lifting structure in 
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lifting step utilizing parallel signal processing. The total 

number of rounding operations is also decreased from 24 to 8 

(33.3 %). We experimentally demonstrate that it contributes to 

reducing total amount of the rounding noise in 5. 

In detail, the 1st stage predicts X111 from all of the remaining 

groups as 
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It includes convolution with multi-dimensional memory 

accessing. For example, the convolution ‘V1 ∗ H1 ∗ D1 ∗ ’ is 

defined as  

{

}

3

1 1 1 000 1

000 1 2 3 000 1 2 3

000 1 2 3 000 1 2 3

000 1 2 3 000 1 2 3

000 1 2 3 000 1 2 3

( )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

V H D x h

x m m m x m m m

x m m m x m m m

x m m m x m m m

x m m m x m m m

+

+ + +

+ + +

+ + + + +

∗ ∗ ∗ =

+

+ +

+ +

+ +

m

      (25) 

where 

1,1,1 332211 +=+=+= +++ mmmmmm .     (26) 

In the 2nd lifting step, three predictions  
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can be done simultaneously on a parallel signal processing 

platform since it is not necessary to wait for calculation results 

each other. Similarly, updating in the 3rd and 4th lifting steps 

are performed.  

Note that there is no difference between the separable 

structure in Fig.5 and the non-separable structure in Fig.6 in 

respect of signals. It means that both of them are expressed with 

the same transfer function which is a product of 1D function. In 

this sense, the transform to be implemented is ‘separable’. 

However, in respect of noise, those are different. The structure 

in Fig.6 is expected to have less rounding noise as it has less 

rounding operations. It is investigated in section 5. 

4. Two-Dimensional (2D) Structures for 

3D Wavelet Transform 

Two-dimensional (2D) structures for the 3D integer wavelet 

transform is newly introduced. 

4.1. Non-separable 2D Structures for 3D Transform 

 

Figure 7. Non-separable 2D structure ‘Ns2D(1)’ for 3D wavelet transform. 
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Fig. 7 illustrates a newly introduced structure ‘Ns2D(1)’ for 

the 3D lifting wavelet transform. The 1st and the 2nd lifting 

steps are the same as those of the ‘separable’ structure in Fig. 5. 

However, the 3rd, 4th, 5th 6th lifting steps are implemented as 

the non-separable ‘2D’ structure. It contributes to reduce 

hardware complexity comparing to ‘Ns3D’ in Fig. 6 since it 

does not use the 3D memory accessing. 

Fig. 8 illustrates another variation ‘Ns2D(2)’ for the 3D 

transform. Unlike the structure in Fig. 7, the 1st, the 2nd and 

the 3rd lifting steps are implemented as the non-separable ‘2D’ 

structure. Whereas the 4th and the 5th lifting steps are the same 

as those of the ‘separable’ structure in Fig. 5. 

In brief, the structures appeared in this paper are expressed 

as 

 

Figure 8. Non-separable 2D structure ‘Ns3D(2)’ for 3D wavelet transform. 
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     (30) 

where [ ] in ‘Ns3D’ and ( ) in ‘Ns2D’ denote the non-separable 

3D structure and the non-separable 2D structure.  

4.2. Comparison of Structures 

Table 1 summarizes the variations of the structure of the 3D 

integer wavelet transform. Unlike ‘Ns3D’, the newly 

introduced structures ‘Ns2D(1) and ‘Ns2D(2)’ do not use 

inter-frame memory accessing which requires huge memory 

space. Instead, the total number of lifting steps is increased 

comparing to ‘Ns3D’. The number of rounding operations is in 

the middle between ‘Sep3D’ and ‘Ns3D’. In this paper, we 

compare the variations in (30) for various input signals from 

various aspects in 5. 

Table 1. Comparison of the structures. 

 Sep3D Ns3D Ns2D(1) Ns2D(2) 

Rounding operations 24 8 16 16 

Lifting steps 6 4 5 5 

Memory accessing 1D 3D 2D 2D 

5. Experimental Results 

In the following experiments, a set of MRI volumetric data 

in Fig. 9 provided by MATLAB is tested. Each frame has 256

× 256 pixels and each pixel is expressed with an 8 bit depth 

integer. Fig. 10 illustrates results of applying the 3D wavelet 

transform to the 8 frames of the MRI data. Note that each 

frequency band signals are normalized to the range of [0,255] 

for display purpose in this figure. In this paper, not only 1) 

variance of the noise in frequency domain and those in pixel 

domain, but also 2) the rate distortion curve in lossy coding 

mode and the entropy rate in lossless coding mode, 3) 

computational time of the transforms, and 4) feature 

comparison with other methods are investigated.  

In this paper, the input signal is not limited to the MRI data 

like [34], but also a random 3D input signal is included. In 

addition, the 3D auto-regressive model expressed as  



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   (31) 

is included into our experiments. Note that ρ is set to 0.9 in the 

experiments in this paper.  
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Figure 9. Tested data set ‘MRI’. 

 

Figure 10. Results of the 3D wavelet transform. 

 

5.1. Evaluation of Rounding Noise 
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(c) Random input 

Figure 11. Rounding noise in each frequency band. 

Firstly, the structures summarized in table 1 are compared in 

respect of the rounding noise. Fig. 11(a), (b) and (c) indicate 

variance of the rounding noise in each frequency bands for MRI 

data, AR model, and random input, respectively. In all cases, 

variance of the noise in ‘HHH’ band of ‘Ns3D’ is 0.08. This is 

because the noise is not amplified. Since value of the rounding 

noise is in the range of [-0.5, 0.5], its variance is 1/12=0.08 just 

after each of the rounding operation. On the contrary, noise 

variance in ‘LLL’ band of ‘Ns3D’ is greater than 0.08. This is 

because multiple noise amplified though convolutions are 

summed up in YLLL. The highest noise variance is observed in 

‘LHH’ band and ‘HHH’ band of ‘Sep’. Noise variance is 

magnified approximately 0.45/0.08=5.6 times in those 

frequency bands in the separable structure in Fig. 5. 

 

Figure 12. Rounding noise in frequency domain. 

Fig. 12 illustrates averaged variance over all frequency 

bands in peak-signal to noise ratio (PSNR) defined as 

)(
255

log10
2

2

10 dBPSNR
σ

=       (32) 

where σ2 denotes variance of the rounding error. It was 

observed that ‘Ns3D’ and ‘Ns2D’ increase PSNR by 5 (dB) 

and 2 (dB) respectively comparing to ‘Sep’.  

 

Figure 13. Rounding noise in pixel domain. 

Fig.13 illustrates variance of the rounding noise in pixel 

domain. The input signal is transformed in forward without the 

rounding operation, and transformed in backward with the 

rounding operations. Variance of the rounding noise in this 

reconstructed signal is measured in this figure. Similarly to Fig. 

13, ‘Ns3D’ is the best and ‘Ns2D’ is the second. There is no 

significant difference among input signals. 

 

Figure 14. Performance in lossless coding mode. 

 

Figure 15. Performance in lossy coding mode 
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5.2. Evaluation of Coding Performance 

Secondly, we investigate the entropy rate to evaluate 

lossless coding performance. Fig. 14 compares the structures 

in respect of lossless data compression rate for various bit 

depth of the input signal ‘MRI’. The compression rate is 

defined as 

(%)100×=
Sep

Str

H

Hη          (33) 

for Str∈ {Ns3D, Ns2D(1), Ns2D(2)} where H denotes the 

entropy rate in bit per pixel (bpp) averaged over all frequency 

band signals which approximates the average code length of 

the compressed data volume of the transformed signal.  

According to Fig. 14, no significant difference was 

observed between the three methods for the original 8 bit depth 

signal. However, when the bit depth of the input signal is 

reduced to 4 (bit), the ratio of the entropy rate is decreased to 

91.9 (%) and 96.2 (%) by ‘Ns3D’ and ‘Ns2D(1)’ respectively. 

Note that the bit depth of pixel values in the range of [0, 2
B
-1] 

is defined as B (bit). In conclusion, performance in lossless 

coding mode is improved by 8.1 (%) and 3.8 (%) by ‘Ns3D’ 

and ‘Ns2D(1)’ respectively for 4 bit depth ‘MRI’ volumetric 

data. 

Fig.15 indicates rate-distortion curve of ‘Sep’ and that of 

‘Ns3D’. The horizontal axis and the vertical axis indicate 

entropy rate and PSNR of the reconstructed signal, 

respectively. In this experiment, quantization is introduced just 

after the forward transform. These curves indicate 

performance of the methods in lossy coding mode. It was 

observed that ‘Ns3D’ is higher than ‘Sep’ by approximately 

1.5 (dB) at 6.5 (bpp). In conclusion, superiority of the 

non-separable structure over the conventional separable 

structure was observed. 

5.3. Evaluation of Computational Time 

Thirdly, computational time of the structures for the 3D 

transform was investigated. Table 2 summarizes 

computational time of ‘Sep3D’, ‘Ns3D’, ‘Ns2D(1)’ and 

‘Ns2D(2)’, respectively. These algorithms were performed 

with MATLAB program on Dell Inspiron 580 PC, Intel Core 

i3-550 Processor 3.2 GHz, 4GB RAM on Windows 7. 

According to the table, it was observed that ‘Ns3D’ is the 

fastest. Both of ‘Ns2D(1)’ and ‘Ns2D(2)’ are almost the same, 

and the second in computational speed. Those are faster than 

‘Sep3D’ by 19 (ms). The result confirms that less lifting steps 

mean faster computation of the transform. 

Table 2. Comparison of computational time. 

 Sep3D Ns3D Ns2D(1) Ns2D(2) 

Computational time 120.7 ms 97.9 ms 101.3 ms 101.4 ms 

5.4. Comparison with Other Methods 

Fourthly, the methods investigated in this paper are 

compared to other conventional methods. Table 3 summarizes 

features of those methods. The well-known international 

standards ‘JPEG’, ‘JPEG-LS’ and ‘JPEG 2000’ performs 

lossless coding. However, those are limited to 2D signals. 

Other methods such as ‘Huffyuv’ and its improved version 

‘Lagarith’ can be applied to 3D signals. However those do 

not support the ‘scalability’. This feature makes it possible to 

analyze the input signal in frequency domain. Therefore this 

paper focused on ‘Sep3D’, ‘Ns3D’ and ‘Ns2D’. Among these 

methods, it was found that ‘Ns3D’ has the minimum lifting 

steps, the minimum rounding noise and the minimum 

computational time. 

Table 3. Comparison with other methods 

 JPEG JPEG LS Huffyuv Lagarith JPEG 2000 Sep3D Ns3D Ns2D 

Input signal 2D 2D 3D 3D 2D 3D 3D 3D 

Entropy 
coding 

Arithmetic 
coding 

Golumb- 
Rice 

Huffman 
coding 

Huffman 
+Run Length 
+Arithmetic 

EBCOT EBCOT EBCOT EBCOT 

Transform or 

prediction 
DPCM 

adaptive 
prediction 

DPCM 
median 
prediction 

(5,3) 
wavelet 

(5,3) 
wavelet 

(5,3) 
wavelet 

(5,3) 
wavelet 

Scalability N.A. N.A. N.A. N.A. available available available available 
Frequency 

analysis 
N.A. N.A. N.A. N.A. available available available available 

Lifting steps --- --- --- --- --- many minimum reduced 
Memory accessing 1D 2D 1D 1D 1D 1D 3D 2D 

 

6. Conclusions 

A 3D integer lifting wavelet transform with reduced amount 

of rounding noise was proposed. Non-separable 

multi-dimensional lifting structures were introduced to 

decrease the total number of lifting steps as well as the 

rounding operations. It was experimentally observed that the 

non-separable 3D structure increases PSNR by 5 (dB) in 

frequency for MRI, AR model and random input signals. It 

was also observed that the non-separable 2D structure 

increases PSNR by 2 (dB) without using inter-frame memory 

accessing. Those PSNR improvements were also observed in 

rate-distortion curves at high bit rates in lossy coding mode. In 

lossless coding mode, data compression performance is 

improved for low bit depth input images. Computational time 

was also improved by the proposed method. 
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