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Abstract: This paper studies the guaranteed state estimation in terms of zonotope, and does some improvements for nonlinear 

discrete time system with a bounded description of noise and parameters. Firstly we extend the Taylor series with respect to two 

variables so that the mean value extension which is used to compute an interval enclosure can be improved and extended. 

Secondly based on the improved mean value extension, a generalization of classical method is proposed as it considers 

uncertainty in the model of system. Thirdly we give one iterative process in one algorithm to obtain a bound of the exact 

uncertain state set. Finally the simulation example results confirm the identification theoretical results. 
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1. Introduction 

The automatic control field includes three aspects: 

prediction, filtering and smoothing. One common property 

exists in these three aspects is to estimate the state of the 

system. The difference is that different states of the system at 

different sample instants are estimated by using different input 

and output observed variables. State estimation is very 

important in closed loop feedback control and target tracking 

process, because some information about the linear system or 

nonlinear system are included in the state estimation. The 

problem of state estimation is similar to the system 

identification theory. Their specific process are formulated as 

follows: given a mathematical model with respect to the real 

system and collecting some observed input-output 

measurements, the state of the real system has to be estimated 

from these measurements by applying some statistic analysis. 

Then one example is given to illustrate the importance of the 

state estimation in target tracking process. The goal of target 

tracking is to estimate some parameters corresponding to the 

considered target with lots of observed data which are 

collected by sensors. These unknown parameters include the 

information of position and velocity. The target tracking can 

be defined as follows: using some prior probability knowledge 

and obtaining the state estimation of the target from observed 

sequences. The state estimation can be used as the state 

variable in the movement process. Then the state estimation is 

of great interest for the next designing flight controller. 

The methods used for estimating state are divided into two 

parts: stochastic methods and deterministic methods. The 

difference between these two methods is whether the prior 

information about noise is known. Based on some 

probabilistic assumptions on noise, the stochastic methods 

(such as Kalman filter, maximum likelihood and Bayes 

estimate) apply the minimum mean square state estimation 

error to obtain the state estimation. But the probabilistic 

assumptions on noise are not realistic and it means these 

probabilistic assumptions are not realized in reality. So in 

order to relax the probabilistic assumptions on noise, the 

deterministic methods are proposed to assume that the noises 

are unknown but bounded. This unknown but bounded 

assumption is weaker than the formal probabilistic assumption. 

Because it needs not any prior distribution of noise. The 

common used deterministic method is called set membership 

estimation [1]. Under set membership estimation, the obtained 

result is not a numerical value but a guaranteed interval on 

state actually. That guaranteed interval means that the true 

state estimation can be included in this interval with one 
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guaranteed accuracy which is assessed by probability 

inequality. Now research on set membership estimation are 

very widely, because set membership estimation can be not 

only applied in linear system, but also in nonlinear system [2]. 

Then different representations are used to describe that 

guaranteed interval such as polytope, ellipsoid, parallelotope 

and zonotope. Each representation has its own advantage and 

disadvantage. In recent years, guaranteed state estimation with 

zonotopes are proposed in [3] to introduce the interval 

mathematics in set membership estimation. From interval 

analysis, the advantage of zonotopes is that one minkowski 

sum of two zonotopes is also a zonotope. But this fact does not 

hold for any other representations. Time varying parameter 

identification with zonotopes is studied under the framework 

of bound error identification [4]. The trade-off between the 

complexity of the zonotopes computation and the accuracy of 

the estimation is handled efficiently by reducing the radius of 

zonotope [5]. The complexity of the zonotopes computation 

can be written as a matrix formulation based on linear matrix 

inequality. Through solving one eigenvalue problem, some 

values and vertices of zonotope can be found with convex 

optimization techniques. As guaranteed state estimation needs 

observed inputs and outputs, then inputs must be chosen 

appropriately. Input design for guaranteed state estimation and 

fault diagnosis is proposed in [6], where covariance analysis is 

deeply derived. State estimation by zonotopes is great 

importance in model predictive control based on 

approximated reachable sets [7]. 

In this paper, we do some improvements on zonotope 

guaranteed state estimation. Firstly we extend the Taylor 

series with respect to two variables so that the mean value 

extension used to compute an interval enclosure can be 

improved and extended. Secondly based on the improved 

mean value extension, a generalization of classical method as 

it considers uncertainty in the model of system is proposed. 

Thirdly we give one iterative process in one algorithm to 

obtain a bound of the exact uncertain state set. 

2. Problem Formulation 

Consider one uncertain nonlinear discrete time system of 

the following form. 

( )
( )

1 ,

,

k k k

k k k

x f x w

y g x v

+ =


=
                 (1) 

where in equation (1) 
n

kx R∈  is the state of the system and 
p

ky R∈  is the measured output vector at sample time k . 

The vector wn

kw R∈  is the time varying process parameters 

and process perturbation vector. vp

kv R∈  is the 

measurement noise vector. Here we assume that the 

uncertainties and the initial state are bounded by known 

compact sets. 

0 0
, ,

k k
w W v V x X∈ ∈ ∈  

To be easy to understand the concepts about zonotope, the 

definitions of zonotope and its other state sets are given as 

follows. 

Definition 1 (Zonotope). Given a vector 
np R∈  and a 

matrix n mH R ×∈ , the set 

{ }:
m m

p HB p Hz z B⊕ = + ∈             (2) 

is called a zonotope of order m . Note that ⊕  means the 

minkowski sum operation. 

Definition 2 (Consistent state set). Given system (1) and a 

measured output k
y , the consistent state set at time k is 

defined as  

( ){ }: ,
k

n

y kX x R y g x v= ∈ ∈ . 

Definition 3 (Exact uncertain state set). Consider a system 

given by (1), the exact uncertain state set k
X  is equal to the 

set of states that are consistent with the measured outputs 

1 2
,

k
y y y⋯  and the initial state set 0

X . 

( )1
, , 1

kk k y
X f X W X k−= ≥∩            (3) 

3. Some Improvements on Interval 

Analysis 

From interval arithmetic analysis, the natural interval 

extension is the fundamental theorem which replaces each 

occurrence of each variable by its corresponding interval 

variable. The natural interval extension is a particular and 

efficient way to compute an interval enclosure. Combining the 

natural interval extension and the Taylor series expansion, the 

improved mean value theorem can be obtained.  

Theorem 1: Consider a function : nf R R→  with 

continuous derivatives about x  and w , where nx R∈  

and wn
w R∈ . The two known compact sets X and W are 

given as the following zonotopes. 

, wsm

w w
X p HB W c C B= ⊕ = ⊕         (4) 

Then  
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w
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Proof: When applying the Taylor series expansion with 

respect to two variables, we obtain the following inclusion 

relation. 
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where □  means the natural interval extension, as 
n

kx R∈ , 
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then ( ), wf p c  is a vector. It means that ( ), n

wf p c R∈ . 

Three matrices are also defined as. 

( )( ) ( )( )
[ ]

1 2

1 2

, , ,

,

x w wM f X W H M f X W C

M M M

= ∇ = ∇

=

□ □
 

Equation (5) can be continued to compute. 
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From equation (6), we see that the state set is included in 

one zonotope. This improved mean value extension uses the 

continuous derivative in w , because there are two stochastic 

variables x  and w  in the state equation. 

Consider the following interval extension:  

A zonotope dq SB⊕  such that ( ), d

wf p c q SB⊆ ⊕  

Then applying the above interval extension in equation (6), 

we obtain one zonotope which includes the state set. It means 

that. 

( )

[ ]

[ ]

, w

w

w

m sd

d

m s

d m s

q

q

f X W q SB MB

B
q S M

B

q H B

H S M

+

+

+ +

 ⊆ ⊕ ⊕


  = ⊕  
  
 = ⊕
 =

         (7) 

The zonotopoe dq SB⊕  can be obtained by means of a 

natural interval extension of ( ), wf p c . Now comparing 

equation (7) and theorem 4 from [8], the difference is that the 

Taylor series expansion with two variables is used here. As 

the stochastic variable w is considered in the derivation 

process, the obtained zonotope is more appropriate than the 

one in [9]. But here no doubt that the computational 

complexity is increased. In order to reduce the computational 

complexity, the strategy of model reduction can be used to 

achieve this goal. 

In set membership estimation theory, the computation of 

the exact uncertain state set is very difficult. In practice, the 

state set is approximated by conservative outer bounds to 

reduce the computation complexity. This section presents one 

iterative method to compute an outer approximation using a 

zonotope. Consider an outer bound of the exact uncertain 

state set, denoted as 
1

ˆ
k

X − , is available at time instant 1k − . 

Similarly a measured output vector k
y  is obtained at time 

instant k . Then the iterative guaranteed state estimation 

algorithm can be given as follows. 

Iterative guaranteed state estimation algorithm:  

Step 1: Given system (1), assume that the initial state 0
x  

is bounded by a known compact set:  

00 0 0
wd m s

qx X q H B
+ +∈ ⊆ ⊕  

Compute a state set at time instant k  as 

11
w

k

d m s

k k qX q H B
−

+ +
−⊆ ⊕              (8) 

where each variable is defined as. 
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Step 2: For 1, 2i N= ⋯  

Compute an outer bound of the consistent state set 
/k iy

X  

and / 1
ˆ

k iX −  with / 0 0
ˆ

kX X=  

Step 3: Compute the intersection operation to obtain the 

state set 
/k ik y

X X∩ . 

End of algorithm 

The iteration process is started from initial time. The 

iteration means that the state set at next time instant is 

dependent of the above state and the above measured output 

variable. This iteration process is similar to the classical 

Kalman filter theory. It also is divided into prediction step, 

measurement step and correction step. 

4. Simulation Example 

Now in this section we apply our iterative correlation tuning 

control approach in flight simulation to design one PID 

controller. Flight simulation is a speed servo system with high 

precision position. Flight simulation with six-degrees of 

freedom is seen in Figure 1. 

 

Figure 1. Flight simulation with six-degrees of freedom. 

The driven element of flight simulation is an electric motor, 

and the essence of the control structure in flight simulation is a 

closed loop system corresponding to the position or speed of 

that electric motor. According to the analysis of the servo 

control system, one negative feedback part is added to reduce 

the sensitivity in the closed loop system, while the cascade 

regulator is introduced in each feedback control structure in 

order to reduce the dependence on the electric motor’s 

parameter. 
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Here we give an example about the pitch position tracking 

loop from flight simulation to verify the feasibility of our 

iterative correlation tuning control approach in precision servo 

control system. In the closed loop system of flight simulation, 

the photoelectric encoder is mounted on the outer pitch frame, 

the angular position signal collected at outer pitch frame is 

regarded as the position feedback part. After the difference 

between two angular positions goes through the position 

correlation part and power amplifier part, then this difference 

will make the electric motor start to rotate. The pitch position 

tracking loop from flight simulation is simplified in Figure 2. 

 

Figure 2. The simplified pitch position tracking loop. 

In Figure 3 the input signal is the relative angular signal of inner pitch loop, and this input signal is collected by one 

photoelectric encoder which is located in inner pitch frame. It means that one photoelectric encoder collects the angular position 

signal to form one position feedback part. The transfer function model of that simplified pitch position tracking loop can be seen 

in Figure 3. 

 

Figure 3. The transfer function model of that simplified pitch position tracking loop. 

In Figure 4 we regard the encoder as a constant and merge 

it in the power amplifier, then the close loop system is an unit 

feedback. me
θ  is the input signal with respect to the electric 

motor, the controller in this position tracking loop is the 

classical PID controller. The linear combination of each 

proportion (P), integral (I) and differential (D) of that 

difference is used to control the electric motor. The classical 

PID control structure is given in Figure 4, ( )r t  is the chosen 

input signal, and ( )y t  is the true output, ( )e t  is the 

difference or error. 

 

Figure 4. The classical PID control structure. 

PID controller is a kind of linear controller which includes 

proportion, integral and differential of the difference or error. 

Its control law is that. 

0

( )1
( ) ( ) ( )

t
D

P

I

T de t
u t K e t e d

T dt
τ τ

 
= + + 

 
∫  

Rewriting the above control law as the transfer function 

form. 

( ) 1
( ) (1 )

( )

i

P D P d

I

KU z
G z K T z K K z

E z T z z
= = + + = + +  

where PK  is the proportional coefficient, IT  is the 

integral coefficient, and DT  is the differential coefficient. 

After some computation, we obtain the expected transfer 

function of outer pitch loop. 

( ) ( )( ) ( )1.725
,

0.0005 1 2.41 1
E e

M z M z
z z

θ θ= =
+ +

 

According to the actual parameters of the flight simulation, 

the electrical and mechanical part of the external pitch frame 

motor and load are given as follows. 

0.499 2.903
,

1 0.1111 1 1 0.0091 1

m e m

e m

C R R C C

T z z T z z
= =

+ + + +
 

Through comparing this flight simulation example and our 

iterative correlation tuning control, we regard the motor and 

load as an integer part, and collect the input-output measured 

data { },me Eθ θ  relating this integer part. e
θ  is computed by 

measured data and that expected transfer function ( )M s . 

( )1

e EM zθ θ−=  
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Before zonotope parameter identification algorithm is 

applied to identify those three unknown parameters, let 

their true values be that 

7, 0.5, 2p i dK K K= = =  

Applying above six steps to construct a sequence of 

candidate zonotopes, and after 20 iterations, these candidate 

zonotopes are given in Figure 5 and Figure 6. 

In Figure 5, the black star denotes the optimal two PD 

parameters as ( ) ( ), 7,2p dK K = ., and a sequence of candidate 

zonotopes generated by zonotope parameter identification 

algorithm include ( ) ( ), 7, 2
p d

K K =  as their interior point. as 

these candidate zonotopes have decreasing volumes with 

iterations, i.e certain contracting properties hold. Generally 

the two identified parameter estimators corresponding to the 

PD parameters can be chosen as the center of the smallest 

zonotope. Further the black star is the optimal ID parameters 

as ( ) ( ), 0.5,2i dK K =  in Figure 6, and results are similar to 

them in Figure 5 

 

Figure 5. Candidate zonotopes for PD parameters. 

 

Figure 6. Candidate zonotopes for ID parameters. 
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5. Conclusion 

Some improvements on the zonotope guaranteed state 

estimation method for nonlinear discrete time systems with a 

bounded description of noise and parameters has been 

developed. The algorithm gives a state set used to bound the 

set of all the states that are consistent with the measured output 

and the given noise. It is different from the classical method, 

we apply the Taylor series expansion with respect to two 

variables to get the improved mean value theorem. 

Furthermore the iteration process is introduced in the 

guaranteed state estimation algorithm. 
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